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Abstract

The Bayesian approach to statistical modelling is a consistent and intuitive frame-

work for dealing with uncertainty about the world. In this approach, we encode any prior

knowledge about variables (observed or unobserved) with the goal of inferring a posterior

distribution over unobserved variables. The most common approaches to Bayesian mod-

elling to date are the so-called parametric Bayesian models: these are specified with a

finite number of unobserved variables. With vast amounts of data readily available today,

these models generally fail to leverage a learning opportunity: no additional structure

beyond that which was defined in the prior can be learned. Any increase in data passed

into the model will only affect the accuracy of the inferred posteriors. Non-parametric

Bayesian models address this problem: they are probabilistic models whose additional

flexibility allows for learning the structure of complex datasets.

In this thesis we present new models and inference algorithms for non-parametric

Bayesian models in the context of hidden Markov models. Our contribution is three-fold:

we introduce for the first time, a family of algorithms for efficient and exact Monte Carlo

inference in non-parametric Bayesian Markov models. Secondly, we apply non-parametric

Bayesian hidden Markov models to the part-of-speech tagging problem in natural lan-

guage processing. Thirdly, we introduce a new family of non-parametric Bayesian hidden

Markov models with a factorial latent Markov chain structure.

More specifically, in chapter 1 we motivate nonparametric Bayesian models using a

simple mixture model example and give an overview of the literature on Bayesian ap-

proaches to hidden Markov modelling. Chapter 2 presents an overview of the foundations

for Bayesian non-parametric modelling by introducing a number of fundamental and well

understood Bayesian non-parametric building blocks.

Using the building blocks introduced in chapter 2, chapter 3 describes a non-parametric

extension to the hidden Markov model, called the infinite hidden Markov model (iHMM)

and introduces a family of fast and exact Monte Carlo inference algorithms for this model.

We also present an overview of extensions for the iHMM which exist in the literature while

introducing some new ones.

Chapter 4 presents a case study on the iHMM in the area of natural language pro-

cessing. In particular, we look at the task of unsupervised part-of-speech tagging. We

compare the non-parametric Bayesian approach against its parametric counterpart and

introduce an alternative way of evaluating any unsupervised part-of-speech tagger.

Our final chapter 5 introduces a new Bayesian non-parametric building block called

the Markov IBP which we then use to build a non-parametric extension of the factorial

hidden Markov model, called the infinite factorial hidden Markov model (iFHMM). We

apply this model to the well-known cocktail party problem, where we separate the audio

from an arbitrary number of speakers using a limited number of microphones.
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Given the important role of hidden Markov models in time series and sequence mod-

eling, and the flexibility of nonparametric approaches, there is great potential for many

future applications and extensions of non-parametric Bayesian hidden Markov models.
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Chapter 1

Introduction

In the last twenty years, business, government and individuals have been producing data

at an accelerating pace. It appears that Moore’s law applies to data: every five years, the

amount of digital information increases tenfold (Eco, 2010). At the same time, advances

at the intersection of computer science and statistics enable us to analyse this data deluge.

The result of this effort is a wealth of data driven services such as machine translation,

speech recognition, search engines and many more.

This revolutionary change in the amount of data available for statistical analysis

suggests an equally dramatic change in the statistical tools we use. In 1897, it took J.J.

Thomson months of experimentation (Dahl, 1997) to generate the data for estimating the

mass-to-charge ration of the electron. Simple descriptive statistics were sufficient to make

a valuable scientific contribution. Today, the Large Hadron Collider at CERN produces

15 peta bytes of data annually (CERN, 2010). Such a vast amount of data offers the

opportunity for accurately uncovering lots of hidden structure and patterns.

One useful tool we can use to analyse large data sets are the so called nonparametric

models. Most statistical models are designed with a fixed number of parameters which we

learn from data, we call them parametric models. For many interesting tasks, parametric

models can typically be learnt well with a modest amount of data. Training the model

with more data only leads to an increase in the number of accurate significant digits

of the learnt parameters. Nonparametric models adapt the number of parameters in

the model to the complexity of the data. Nonparametric models are not just theoretical

statistical constructions but are increasingly being used in large scale applied data analysis

solutions (Halevy et al., 2009).

In this thesis we investigate and propose a new set of nonparametric models for

sequential data: more specifically, we study Bayesian Nonparametric Hidden Markov

Models. In the next three sections, we carefully explain and motivate each of the elements

of the title of this thesis: “Bayesian”, “Nonparametric” and “Hidden Markov Models”.
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1.1 Bayesian Models

A major concern in all statistical analyses is the problem of generalisation: finding the

sweet spot in the spectrum between simple models which might under fit and complex

models which can over fit. Under fitting is the problem where a model is too constrained

and doesn’t learn from data points. Over fitting is the problem when a model starts to

memorise rather than generalise the training data. We illustrate both phenomena using

a regression example.

Consider the problem of fitting a polynomial to N data points xn, yn; we will denote

with {xn} the set of all inputs and {yn} the set of all outputs. If we parameterize

the polynomial or order D using parameter w ∈ RD, we can construct the following

probabilistic model

p({yn}|{xn}, w) =
N∏
n=1

(
Normal

(
yn;

D∑
d=0

xdnwd, 1

))
. (1.1)

We can fit the parameter w using a maximum likelihood estimator. Figure 1.1 illustrates

three polynomials of different order which are fit to 10 data points randomly sampled

from the function f(x) = sin(2πx). From this figure it is clear that the D = 0 polynomial

under fits the data: the model is too constrained and can only model the mean
∑

n yn/N .

Also note that the D = 9 polynomial over fits the data: the polynomial interpolates (or

memorises) the data points and hence makes bad predictions for all points other than

the observations.

x

t

0 1

−1

0

1

(a) D = 0

x

t

0 1

−1

0

1

(b) D = 3

x

t

0 1

−1

0

1

(c) D = 9

Figure 1.1: Plots of polynomial regression of various orders D. The red line represents

the model fit whereas the green line represents ground truth. With permission (Bishop,

2006).

There are various ways of finding the right tradeoff between under fitting and over

fitting. A common Bayesian approach consists of treating the model complexity as just

another unknown quantity we want to learn from data. A Bayesian analysis of the

polynomial fitting model resolves the generalisation problem by introducing a prior on

14



the parameters {wd} and computing the marginal likelihood or evidence

p({yn}|D) =

∫
{wd}

(
N∏
n=1

p({yn}|{xn}, w)

)
D∏
d=1

p(wd). (1.2)

The evidence computes the probability of the data under polynomial regression with

degree D with all parameters integrated out. Integrating out the parameters is crucial as

it weighs each value of the likelihood p({yn}|{xn}, w) by its plausibility under the prior

p(wd). In other words, by integrating over unknown variables, the posterior distribution

will concentrate around parameter settings which give high probability on average. If we

let the prior on w be a multivariate normal distribution with zero mean and covariance

Σ0, then the log marginal likelihood is

log p(y|X,Σ0) ∝ −0.5 log |I +XΣ0X
T |+ 0.5yTX(Σ−1

0 +XTX)−1XTy, (1.3)

where Xnd = xdn. We now consider two specific choices for the covariance matrix Σ0.

A first proposal for the prior on {wd} would be to choose p(wd) = Normal(wd; 0, 1),

or Σ0 = I. The left plot in figure 1.2 shows the marginal likelihood for different model

complexities, which in our case corresponds to different polynomial degrees. The plot

peaks at D = 3 which indicates that a third order polynomial is the most likely to have

generated the data. This model optimally trades off prior and likelihood. Any model

corresponding to a higher order polynomial would lead to a better fit, e.g. the D = 9

plot in figure 1.1, but would be less likely under the prior. Any model corresponding to a

lower order polynomial is more likely under the prior but has a bad fit, or low likelihood.

The method of finding an optimal model complexity by maximizing the marginal like-

lihood is very common and in the Bayesian literature often refered to as model selection.

On second consideration, the prior p(wd) = Normal(wd; 0, 1) induces erratic polynomi-

als when D becomes large. A draw from this prior would most likely have non-neglegible

higher order terms: for polynomials, this means very rapidly changing functions. In our

setting it is arguably not desirable to generate these erratic functions for large D. Our

second experiment will explicitly encode that higher order terms have small magnitude:

p(wd) = Normal
(
wd; 0, 1

2d

)
. The right plot in figure 1.2 illustrates the evidence for differ-

ent model complexities. In this case we observe very different behavior: the data supports

increasingly large models! The variance of the higher order terms increases fast enough

so that they do not penalize models of high order. More data can always overrule the

prior; hence, although this model doesn’t penalize higher orders it has the flexibility to

use higher order terms if there is data to support it.

This leads us to the core idea of nonparametric models: by choosing an appropriate

prior, we can let the number of parameters increase to infinity so we don’t under fit the

15
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Figure 1.2: Marginal likelihood for the Bayesian treatment of polynomial regression. In

the left plot, we use an i.i.d. prior on the {wn}, in the right plot, we choose a prior where

higher order wn have lower variance a priori.

data while at the same time use Bayesian methods to prevent over fitting the data. In

the following section we will illustrate this idea again using Gaussian mixture models.

It is important to add that there are many other ways of preventing over- and under

fitting for both parametric and non-parametric models: e.g. cross-validation, bootstrap-

ping, regularisation, etc (Hastie et al., 2003). Although these are of great value to the data

analysis community, they are often ad-hoc additions to existing models. The Bayesian

paradigm integrates both the description of the model as well as the method for prevent-

ing over fitting into one and the same paradigm: probability theory. For this reason we

believe our search for Bayesian nonparametric models is a promising area of research.

1.2 Bayesian Nonparametric Models

When modelling complex distributions, it is hard to - a priori - choose a good complexity

for a parametric model. Choosing a parametric model that is too simple can introduce

under fitting whereas choosing a parametric model that is too complex can result in

either over fitting or wasted computational cycles. In the previous section, we discussed

the possibility of evaluating several models of increasing complexity and then choosing

the optimal one according to some criterion. In this section we illustrate the advantages
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Figure 1.3: A kernel density plot of the redshift data set from Wasserman (2006). We

used a Gaussian kernel where the bandwidth was chosen using the default nrd0 method

in R. The kernel density estimate illustrates that the data is multi modal with each mode

having a different width.

of using a Bayesian nonparametric approach to data modelling.

We analyse the one dimensional Sloan Digital Sky Survey data set from Wasserman

(2006). This data set consists of 1266 data points, each of which represents the redshift

of a galaxy. There is astrophysical evidence that a peak in the density of the data set

corresponds to a galaxy cluster. Hence we want to learn about the number of separate

modes in the density. The individual data points and a kernel density estimator of the

data set are illustrated in figure 1.3. Although the kernel plot might be sufficient to

estimate the number of modes for this simple data set, we want to analyse the data using

a Bayesian model as an example of what could be done in a more complex Bayesian

analysis.

We use a very simple yet widely used Bayesian probabilistic model as our density

estimator: the normal mixture model. A normal mixture model assumes that a set of

17



π ∼ Dirichlet(γ0),

∀k ∈ {1 · · ·K},
µk, τk ∼ NormalGamma(µ0, λ0, α0, β0),

∀n ∈ {1 · · ·N},
cn|π ∼ Discrete(π),

xn|µ, τ, cn ∼ Normal(µcn , τcn)

k = 1 ¢ ¢ ¢ K

n = 1 ¢ ¢ ¢ N

cncn ¹k¹k

xnxn

¼¼

¿k¿k

Figure 1.4: Graphical Model for a normal Mixture Model

data points x1, x2, · · · , xN is generated as follows: first we choose a fixed number of

clusters K. Then for each of K clusters we chose a mean µk and a precision τk from

a NormalGamma prior distribution. Moreover, each cluster is assigned a weight πk with

π ∼ Dirichlet(γ0), a K-dimensional Dirichlet distribution. Finally, each data point xn is

generated by first drawing a cluster assignment cn ∼ π and then drawing the data point

xn from a normal distribution with mean µcn and precision τcn . Figure 1.4 illustrates the

graphical model for the normal mixture model.

An analytical solution to the posterior is intractable but we can approximate it by

computing samples from the posterior distribution using a collapsed Gibbs sampler (Neal,

1991, Rasmussen, 2000). The posterior distribution takes the form

p({cn}|{xn}, µ0, λ0, α0, β0, γ0) ∝
∫
dµdτdπ

N∏
n=1

(πcnNormal(xn;µcn , τcn)) . (1.4)

The collapsed Gibbs sampler produces these samples by re-sampling each cn individually

keeping the other c¬n fixed. More specifically, using Bayes rule and the marginalisation

result in (Paquet, 2007, Appendix A.6)

p(cn|{c¬n}, {xn}, µ0, λ0, α0, β0, γ0)

∝ p(cn|c{¬n}, γ0)p(xn|{xi}i:ci=cn , µ0, λ0, α0, β0)

=

(∫
dπp(cn|π)p(π|c¬n, γ0)

)(∫
dµdτNormal(xn;µ, τ)p(µ, τ |{xi}i:ci=cn , µ0, λ0, α0, β0)

)
=
mcn + γ0/K

N − 1 + γ0

·

StudentT

λ0µ0 +mcnµml
λ0 +mcn

,
(λ0 + 1)β +

∑
i:ci=cn

(x− µml)2 +
λ0mcnµ

2
ml

λ0+mcn

λ0(α +mcn)
, 2.0(α +mcn)


(1.5)
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where mk is the number of data points in cluster k, mk = |{i : ci = k}| and µml is

the maximum likelihood estimate of the cluster mean parameter µml =
∑

i:ci=cn
xi/(|{i :

ci = cn}|). A key property of the collapsed Gibbs sampler is that it integrates out the

parameters µcn , τcn and only re-samples the cluster assignments cn.

We chose the hyper parameters of the mixture to be γ0 = 1/K. This corresponds to

choosing a Dirichlet prior which puts more mass on low entropy configurations for π; see

appendix A for a detailed explanation of this property of the Dirichlet distribution. This

choice of prior will encourage the model to use as few clusters as possible to model the

data. For the cluster mean and precision hyper parameters we chose µ0 = 0, λ0 = 1, α0 =

1 and β0 = 1 to model our initial belief that clusters are zero centred with a variance

around 1. This choice of prior for the cluster parameters has the flexibility for generating

very tight clusters (if there is enough data to increase the posterior cluster precision) as

well as generating very wide clusters.

Recall that the scientific question we need to answer is: how many galaxies are rep-

resented in our data set. For that, we need to measure how many modes, or clusters

there are in our data set. A priori, we don’t know how many clusters are sufficient to

model the data set. Hence, we run multiple experiments, varying the number of clus-

ters K ∈ {10, 12, 14, 16, 19, 20} in each run and for each posterior sample we generate,

count how many occupied clusters we find. Hence, for each posterior sample we compute

the cluster occupancy: i.e. how many clusters with any data points in them are there?

Figure 1.5 shows the cluster occupancy histograms for different values of K.

Figure 1.5: The cluster occupancy histograms for Gibbs iteration 100 to 500 for K ∈
{10, 12, 14, 16, 19, 20}.
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It is clear that when K is small, the parametric model needs all clusters to model

the data properly. As K grows, the mixture model becomes more complex and not all

clusters are necessary to fit the data. The plots suggest that about 14 clusters are needed

to explain the data well, but some uncertainty regarding the number of clusters remains.

Although the Bayesian approach “prunes” out unnecessary clusters when K is large, we

pay a computational cost for doing so. At K = 20 the collapsed Gibbs sampler will need

to evaluate for each data point whether it needs to be assigned to each of the K = 20

clusters. Since all empty clusters are indistinguishable, a computationally more efficient

approach would not consider each empty cluster separately.

Disregarding computational efficiency, we might wonder whether we need to specify

the maximum number of clusters beforehand. For a complex data set, we might have no

idea for any reasonable value for the maximum. Can we just make our mixture model

infinitely large by letting K →∞? The naive approach to doing so fails miserably: when

the number of potential clusters K → ∞ the distribution over the mixture distribution

π becomes “too sparse”: all but one entry get zero mass. In other words, in the limit

K →∞ the Dirichlet prior on π degenerates to a point mass of probability 1 on a random

dimension.

Interestingly enough, following (Neal, 1991, Rasmussen, 2000) we can compute the

distribution over the cluster assignments when we integrate out the “misbehaving” vari-

able π. Because of conjugacy between the Dirichlet and the Discrete distribution, we can

analytically find

p(c|γ̂0) =

∫ ( N∏
n=1

p(cn|π)

)
p(π|γ̂0)dπ

=

∫ ( K∏
k=1

πmkk

)(
Γ(γ̂0)

Γ( γ̂0
K

)K

K∏
k=1

π
γ̂0/K−1
k

)
dπ

=

∏K
k=1 Γ(mk + γ̂0

K
)

Γ( γ̂0
K

)K
Γ(γ̂0)

Γ(N + γ̂0)

=

(
γ̂0

K

)K+
(
K+∏
k=1

mk−1∏
j=1

(j +
γ̂0

K
)

)
Γ(γ̂0)

Γ(N + γ̂0)
, (1.6)

where mk is defined as the number of data points in class k and K+ is the number of

classes with mk > 0. If we take the limit K → ∞ for equation (1.6) we notice that for

every possible setting of c, p(c|γ̂0) = 0. This is not a problem since we are not interested in

the exact assignment of c but only in partitions of c. E.g. if we had a data set with three

data points, we do not distinguish between the class assignments {c1, c2, c3} = {1, 1, 2}
and {c1, c2, c3} = {2, 2, 1}: they correspond to the same partition. Hence we say that a

partitioning represents an equivalence class of class assignment vectors and denote the

equivalence class of assignment vector c as [c].
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At this point we would like to compute the distribution over equivalence classes

p([c]|γ̂0) as K →∞. The final ingredient necessary to compute this limit is to count how

many class assignment vectors c are in the equivalence class [c]. We define K = K0 +K+

where K is the total number of classes, K0 is the number of classes to which no data

point is assigned and K+ is (as defined above) the number of used classes. Starting from

one assignment vector c in the equivalence class [c], we can find all other assignment vec-

tors by permuting the assignment indices: there are K! of these permutations. We need

to adjust this number by the number of permutations of the unused class assignments

as we are over-counting assignments that only differ by a permutation of the unused

class assignments. In other words, there are K!/K0! different class assignment vectors

in equivalence class [c]. Finally using the mathematical results in appendix A we can

compute

lim
K→∞

p([c]|γ̂0) = lim
K→∞

∑
c∈[c]

p(c)

= lim
K→∞

K!

K0!

(
γ̂0

K

)K+
(
K+∏
k=1

mk−1∏
j=1

(j +
α

K
)

)
Γ(γ̂0)

Γ(N + γ̂0)

= αK+

(
K+∏
k=1

(mk − 1)!

)
Γ(γ̂0)

Γ(N + γ̂0)
. (1.7)

Equation (1.7) defines a proper distribution over partitions. In other words, if we only

consider which data points belong to the same cluster, this construction allows for the

number of clusters to be arbitrarily large. In section 2.1 we will show how sampling can

be done for this model and how, perhaps ironically, it is more efficient than the sampler

for a finite mixture model. The bottom right plot of figure 1.5 illustrates that the number

of clusters for the K →∞ model are qualitatively very similar to that of the parametric

model with a large K. Finally, we refer to Aitkin (2001) who more extensively evaluates

various model selection techniques for the normal mixture model including likelihood,

Bayesian and Bayesian nonparametric methods on the galaxy data set we used here.

We illustrated how a model with a potentially infinite number of parameters has

very similar characteristics to a very large finite model. This leads to the starting point

for our thesis: some problems cannot be described by a finite number of parameters, for

other problems we do not know the true generating process, in both cases infinite capacity

or Bayesian nonparametric models can guard against mis-specification. Our hope is that

when enough data is available, the nonparametric model will converge to the true statistics

for the data. Moreover, as we have demonstrated above, a nonparametric model might

even lead to computational savings compared to a large parametric model.

In this thesis we are particularly interested in studying the properties of Bayesian

nonparametrics in the context of Markov models. In the next section we give a brief
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overview of the relevant literature in this area.

1.3 Bayesian Nonparametric Hidden Markov Models?

Sequential data are at the core of many statistical modelling and machine learning prob-

lems. For example, text consists of sequences of words, financial data are often sequences

of prices, speech signals are represented as sequences of short term power-spectra coeffi-

cients (cepstral), proteins are sequences of amino acids, DNA are sequences of nucleotides

and video is a sequence of still images. Although it is possible to directly model the re-

lationships between subsequent elements of a time series, e.g. using auto-regressive or

n-gram models, in some cases we believe the data has some underlying hidden struc-

ture. For example, the observed pixels in a video might correspond to objects, the

power-spectra coefficients in a speech signal might correspond to phones, and the price

movements of financial instruments might correspond to underlying economic and po-

litical events. Models that explain sequential data in terms of such underlying hidden

variables can be more interpretable and have better predictive properties than models

that try to directly relate observed variables.

sTsT

yTyT

s0s0 s1s1 s2s2

y1y1 y2y2

Figure 1.6: The graphical model for the hidden Markov model.

The hidden Markov model (HMM) is an influential model for sequential data that

captures such hidden structure (Baum and Petrie, 1966, Baum et al., 1970, Rabiner,

1989). An HMM describes a probability distribution over a sequence of observations

y1, y2, · · · , yT of length T . The HMM assumes there exists a Markov chain denoted by

s1, s2, · · · , sT where each st is in one of K possible states. The distribution of the state

at time t only depends on the states before it, through the state at time t− 1 by a K by

K stochastic transition matrix π, where πij = P (st = j|st−1 = i). This is the first-order

Markov property, which gives the HMM its middle name. Although it is straightforward

to generalise the HMM to higher orders, for simplicity we will only consider first order

Markov models in this thesis. We will refer to the variable that indexes sequences as time,

and assume discrete time steps. However, the models described are readily applicable to

sequences indexed by any other scalar variable. Generally, we do not directly observe the

Markov chain, but rather an observation yt which only depends on an observation model
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F parametrised by a state-dependent parameter θst . For example, if we model an object

moving through a video using an HMM, we could assume that the position of the object

at time t (st), is only dependent on its position at time t−1. Moreover, we don’t directly

observe this position but rather we observe pixels yt whose configuration is dependent on

the state at time t. We can write the probability distribution induced by the HMM as

follows1:

p(y1:T , s1:T |K, π, θ) =
T∏
t=1

p(st|st−1)p(yt|st) =
T∏
t=1

πst−1,stF (yt; θst). (1.8)

Figure 1.6 shows the graphical model for the HMM. The observation model F can be

made arbitrarily complex: in a natural language processing application, Gao et al. (2007)

used a multinomial output distribution, Jurafsky and Martin (2000) describes how in

speech recognition a normal distribution or mixture of normal distributions is commonly

used.

In practise we often use the HMM in a setting where the sequence y1:T is given and

we want to learn something about the hidden representation s1:T , and perhaps about

the parameters π, θ and K. The form of the observation model F is also important,

but for this chapter we assume that F is fixed and any flexibility in F is captured by

its parametrisation through θ. As an example of learning in HMMs, consider speech

recognition: we can use an HMM where the hidden state sequence corresponds to phones

and the observations correspond to acoustic signals. The parameters π, θ might come

from a physical model of speech or be learnt from recordings of speech. Depending on

how much domain knowledge is available, we distinguish three computational questions.

• π, θ,K given. With full knowledge of the parameters π, θ and K we only need to

infer s1:T given the observations y1:T . We can apply Bayes rule to equation 1.8 to

find the posterior distribution over s1:T

p(s1:T |K, π, θ, y1:T ) =
p(y1:T , s1:T |K, π, θ)
p(y1:T |K, π, θ)

, (1.9)

∝
T∏
t=1

p(st|st−1)p(yt|st). (1.10)

The last line follows from the fact that p(y1:T |K, π, θ) is a constant that is indepen-

dent of s1:T . Computing this distribution can be done using a beautiful application

of dynamic programming which is called the forward-backward algorithm in the

context of HMM’s; we review this algorithm in appendix B.

1To make notation more convenient, we assume that for all our time series models, all latent chains

start in a dummy state that is the 1 state: e.g. for the HMM s0 = 1.
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• K given, π, θ learnt. If only the number of hidden states K and observations

y1:T are known, we often want to learn the best parameters θ and π in addition

to the hidden representation s1:T . This problem is underspecified: we need a cri-

terion to decide what the “best parameters” are. Common criteria are maximum

likelihood and maximum a posteriori objectives. The former finds θ, π which max-

imise p(y1:T |θ, π) while the latter introduces a prior distribution for θ, π and finds

the θ, π which maximise p(y1:T |θ, π)p(θ, π). Algorithms like expectation maximiza-

tion (Dempster et al., 1977) can search for the maximum likelihood and maximum

a posteriori solutions but will generally only find locally optimal estimates.

• π, θ,K learnt. Finally, given observations y1:T , consider the problem of discovering

a statistical meaningful value for K in addition to the hidden representation s1:T

and the other parameters π, θ. Using the maximum likelihood criterion turns out

to be a bad idea as more states always lead to a better fit of the data: the nonsen-

sical solution where K = T and each state st has its own emission and transition

parameters, maximises the likelihood. The Akaike Information Criterion (Akaike,

1974) and Bayesian Information Criterion (Schwarz, 1978) can be used to adjust

the maximum likelihood estimate by penalising the number of parameters.

Another principled approach to learning π, θ or K is a fully Bayesian analysis of the

model as we described in section 1.1. The Bayesian analysis treats the parameters π, θ

as unknown quantities and introduces them as random variables in the model. This

requires adding a prior distribution, e.g. p(θ|H) and p(π|α), and extending the full joint

distribution to

p(y1:T , s1:T , π, θ|K) = p(π|α)p(θ|H)

(
T∏
t=1

p(st|st−1)p(yt|st)

)

= p(π|α)p(θ|H)

(
T∏
t=1

πst−1,stF (yt; θst)

)
. (1.11)

A common choice for the prior on π is to use a symmetric Dirichlet distribution on each

row: if we denote with πk the k’th row of π then πk
iid∼ Dirichlet( α

K
, α
K
, · · · , α

K
) i.i.d. for

all k ∈ {1, K}. Similarly, a common prior on θ factorises for each state k: θk
iid∼ H i.i.d.

for all k ∈ {1, K}, where θk denotes the parameter for state k. H can be any distribution

but will frequently be chosen to be conjugate to the observation model F . Figure 1.7

shows the graphical model for the Bayesian analysis of the HMM.

Similar to our analysis of the regression problem in section 1.1, we can now compute

the posterior distributions p(π, θ|y1:T , α,H) or p(s1:T |y1:T , α,H) by integrating over re-

spectively s1:T or π, θ. Moreover, in a Bayesian analysis of the HMM we can compute

the marginal likelihood or evidence p(y1:T |K) =
∫
p(y1:T |K, θ, π)p(θ, π|K) for comparing,
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Figure 1.7: The graphical model for the Bayesian hidden Markov model.

choosing or averaging over different values of K. Unfortunately, analytically computing

the marginal likelihood for an HMM is intractable. We briefly review three different

methods to deal with this intractability.

• There is a large body of literature in statistics on how to use Markov Chain Monte

Carlo (MCMC) techniques to learn the number of states in HMMs and related

models, Scott (2002). We can distinguish two main approaches: MCMC methods

which estimate the marginal likelihood explicitly and methods which switch between

different K. Examples of the former are Annealed Importance Sampling by Neal

(2001) and Bridge Sampling by Fruhwirth-Schnatter (2004) which have been suc-

cessfully applied in practice. The disadvantage of these methods is that it can be

computationally expensive to find an accurate estimate of the marginal likelihood

for a particular K. If one needs to run the estimation procedure for each different

K, the computational overhead becomes high. Reversible jump MCMC methods

pioneered in Green (1995) are a family of methods which “jump” between models

of different size. In the context of HMM’s, Robert et al. (2000) have implemented

this idea to jump between HMM models of different K.

• A very elegant approximation to the exact marginal likelihood is the approach de-

veloped by Stolcke and Omohundro (1993). Note that in the graphical model in

figure 1.7, if the hidden states s1:T were observed, the parameters π and θ become

independent and assuming that the prior and likelihood are conjugate, we can com-

pute the marginal likelihood analytically. Stolcke and Omohundro (1993) propose

to choose a good state sequence and integrating out the other parameters to com-

pute an approximation to the marginal likelihood. They devise a state-merging

algorithm based on this idea.
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• A third technique to approximate the marginal likelihood is based on variational

Bayesian (VB) inference. VB computes a lower bound on the marginal likeli-

hood; MacKay (1997) and Beal (2003) describe VB inference algorithms that bound

the marginal likelihood of an HMM. VB generalises EM as it doesn’t use a point

estimate of the parameters π, θ but rather an approximate posterior of these param-

eters. Moreover, VB also generalises the idea in Stolcke and Omohundro (1993) as it

doesn’t use a point estimate of the state sequence s1:T but rather a full distribution

over these random variables.

1.4 Overview

The key problem we address in this thesis is how to deal with choosing the number of

states in an HMM or any of its extensions (Bengio and Frasconi, 1995, Ghahramani and

Jordan, 1997, Ghahramani and Hinton, 2000). If we have prior knowledge about the

underlying physical process generating the observed sequence, and we know the number

of states in that process, then we can set K to that value. For example, HMMs have been

used to model ion channel currents, where it is known that the ion channel protein can

be in some discrete number of physical conformations. In speech recognition, we could

impose the constraint that the hidden states correspond to known phones of a language.

However, in many applications the number of underlying states is not known a priori and

must be inferred from the data.

In section 1.3 we reviewed several Bayesian approaches to learning the number of

states for HMMs. Unfortunately, these Bayesian approaches have both statistical and

computational limitations. The main statistical limitation is the assumption that a (usu-

ally small) finite number of states provides an adequate model of the sequence. In many

settings, it is unlikely one can bound a priori the number of states needed. For exam-

ple, if the states correspond to political and economic circumstances affecting financial

variables, it’s hard to say how many such discrete circumstances are needed, and to be

confident that new, as yet unobserved circumstances won’t arise in the future. The com-

putational limitation is that these approaches have to compare different finite numbers

of states, and each such comparison requires some method of approximating intractable

marginal likelihoods.

This brings us to the main topic of the thesis: nonparametric Bayesian approaches to

hidden Markov models. This topic was first introduced in Beal et al. (2002), in particular

as the infinite hidden Markov model (iHMM). In chapter 3 we show how this model

overcomes the statistical and computational limitations of the Bayesian approach to the

HMM by defining a Markov chain with a countably infinite (i.e. unbounded) number

of hidden states. For any finite observed sequence, only a finite number of these states
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can be visited. Moreover, as the sequence length is extended and new “circumstances”

arise, new states can be recruited from the unbounded pool of states just as in the

nonparametric mixture model from section 1.2. Chapter 4 describes a more detailed

experiment using the iHMM for a task in natural language processing called part-of-

speech tagging. In chapter 5 we describe an extension of the iHMM called the infinite

factorial hidden Markov model (iFHMM), first introduced in Van Gael et al. (2008a).

Analogously to how the Factorial HMM extends the HMM, the iFHMM is a Bayesian

nonparametric Markov model with a factorised latent state space. We conclude the thesis

with a number of future research ideas. Before we embark on our journey through the

world of Bayesian nonparametric Markov models, we dedicate the next chapter to an

in-depth look at some Bayesian nonparametric building blocks.
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Chapter 2

Nonparametric Bayesian Building

Blocks

In this chapter we introduce some basic but important Bayesian nonparametric building

blocks. The goal of this chapter is to provide enough theoretical foundation to build

Bayesian nonparametric Markov models out of these basic components and provide insight

into how we can construct efficient sampling algorithms. For each of the building blocks

we describe different constructions, summarise the literature on inference and provide

empirical insight into the behaviour of these distributions. A more rigorous mathematical

description of the stochastic processes and random measures described in this chapter can

be found in Müller and Quintana (2004), Pitman (2006), Teh (2010), Hjort et al. (2010).

In section 2.1 we introduce the Chinese Restaurant Process (CRP) and the related

Dirichlet Process (DP): these distributions are commonly used as a prior for mixture

models. In section 2.2 we describe an extension of the Dirichlet process called the hi-

erarchical Dirichlet process (HDP) and its related combinatorial construction called the

Chinese Restaurant Franchise (CRF). The HDP is the key construction which allows us to

use the DP in hierarchical Bayesian models. This will be the main building block for the

nonparametric Markov model which we describe in chapter 3. Finally, in section 2.3 we

describe the Indian Buffet Process (IBP) and the related Beta Process. This distribution

is used in a generalisation of finite factor models which we describe in chapter 5.

2.1 Chinese Restaurants and Dirichlet Processes

In our discussion of the finite mixture model in section 1.2 we empirically showed that it is

unnecessary to constrain the number of mixture components a priori: with an appropriate

choice of prior distribution, a Bayesian approach to mixture modelling automatically

prunes states not needed to explain the data. By moving to partitions of the data rather

than individual cluster assignments, we showed how we can safely take the infinite limit
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of a finite mixture model.

In this section we relate this infinite mixture model to a Bayesian nonparametric mix-

ing distribution. This mixing distribution comes in various flavours: a random measure

called the Dirichlet Process (Ferguson, 1973), a combinatorial stochastic process called

the Chinese restaurant process (Pitman, 2006) and a stick breaking construction (Sethu-

raman, 1994).

2.1.1 Definition and Constructions

First we introduce the combinatorial stochastic process called the Chinese Restaurant

Process (CRP) and show how it relates to the infinite mixture model in section 1.2. Next,

we introduce a second combinatorial stochastic process called the Polya Urn Scheme and

relate it to the CRP. Then we show how the CRP is the marginal distribution of a random

measure called the Dirichlet process (DP). We conclude the section with a description of

the DP as a stick breaking construction.

The Chinese Restaurant Process.

Imagine a Chinese restaurant with an infinite number of tables. Consider the following

recipe by which customers decide where to sit. The first customer entering the restaurant

sits at the first table by default. The second customer enters the restaurant and sits at the

first table with probability 1
1+α

and at table two with probability α
1+α

. Imagine he chooses

to join the first customer at the first table. The third customer enters and he chooses to

sit at the first table with probability 2
2+α

and at the second table with probability α
2+α

.

More generally, assume ni people are sitting at table i when the n’th customer enters the

restaurant; then customer n chooses to sit at table i with probability ni
n−1+α

and at a new

table with probability α
n−1+α

. After N customers have entered the restaurant, we can

interpret each table as representing a partition in a partitioning of the integers 1 · · ·N .

In other words, two people sitting at the same table are in the same partition while two

people sitting at different tables are in different partitions. Figure 2.1 illustrates this

process for N = 6. This stochastic process which defines partitions over the integers is

called the Chinese restaurant process (Pitman, 2006).

A key property of this distribution is known as infinite exchangeability. We say an

infinite collection of random variables a1, a2, · · · is infinitely exchangeable under distri-

bution p if and only if for all integers l and all permutations σ on L, p(a1 = â1, a2 =

â2, · · · , al = âl) = p(a1 = âσ(1), a2 = âσ(2), · · · , al = âσ(l)) where âi are possible values for

the random variables ai. This property says that exchanging the value of any random

variables will not change the probability of the configuration.

For the CRP let us denote with cn the index of the table at which customer n is
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Figure 2.1: Chinese restaurant process simulation. An example Chinese restaurant pro-

cess with 6 customers. The first customer always sits at the first table. The second

customer sits at the first table with probability 1/1 + α and at a new table with prob-

ability α/1 + α. In our example, the customer decided to join table 1. The third cus-

tomer decided to sit at a new table; the probability of this happening was α/2 + α.

After 6 customers entered the restaurant, the induced partitioning is [126; 3; 45] with

p([126; 3; 45]) = (α · 1 · α · α · 1 · 2)/(α · (1 + α) · (2 + α) · (3 + α) · (4 + α) · (5 + α)).

seated. A simple proof by induction shows that the sequence c1, c2, · · · is an exchangeable

sequence. Exchangeability for the CRP thus implies that the order in which people join

tables has no effect on the probability of a particular partitioning. In other words, the

probability of a partitioning ΠN induced by a CRP with N customers is only dependent

on the number of people seated at each table.

Let us denote with ni the number of people at table i under ΠN and let T be the

total number of occupied tables. Note that the number of tables T is not a deterministic

quantity: it is a random variable itself. We now compute the probability of ΠN by

ordering the customers so they first fill up table 1 until n1 people are seated, then table

2 until n2 people are seated, etc. Then the probability distribution for the partitioning

Πn is

p(ΠN |α) =
α

α

1

1 + α
· · · n1 − 1

n1 − 1 + α︸ ︷︷ ︸
Table 1

α

n1 + α

1

n1 + 1 + α
· · · n2 − 1

n1 + n2 − 1 + α︸ ︷︷ ︸
Table 2

· · ·

=
αT
∏T

t=1(nt − 1)!∏N−1
n=0 (n+ α)

=
αT
(∏T

t=1(nt − 1)!
)

Γ(α)

Γ(N + α)
. (2.1)

The similarity between the distribution defined by the infinite mixture model in equa-
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tion (1.7) and the distribution defined by the CRP in equation (2.1) is now clear: up to

a renaming of variables n· with c·, and α with γ̂0, the formula are exactly the same.

In other words, the distribution over partitions defined by the CRP is exactly the same

distribution as the one defined by the infinite limit of the finite mixture model. This

is the first in a series of exciting connections between seemingly different constructions

which in essence define the same distribution.

Connection to the Polya Urn Scheme

The Chinese Restaurant Process is equivalent to another common stochastic process

called the Polya urn scheme (Blackwell and MacQueen, 1973). Polya urn schemes are a

family of algorithms which define a discrete probability distribution through the metaphor

of filling an urn with coloured balls. For our purposes we consider a Polya urn scheme

that is parametrised by a single real number α > 0. We will count the total number

of balls with colour i in the urn as ni. Initially the urn is empty (all ni = 0) but at

each time step, with probability ni
α+

∑
i ni

we add a ball with colour i to the urn and with

probability α
α+

∑
i ni

we add a ball with a new colour to the urn. Depending on the colour

we chose we augment the appropriate ni variable by one. First note that if we execute

this recipe N times there will be N balls in the urn. The final number of different colours

that are represented in the urn can be anything between 1 and N . Also, if there are a

lot of balls with colour j in the urn, the probability of adding an extra ball with colour

j is high. The parameter α controls the growth of the number of colours: if α is large

with respect to
∑

i ni then it is very likely that a new colour will be added to the urn.

A Polya urn scheme can be interpreted as a nonparametric prior for a clustering: each

data point corresponds to a ball and each cluster to a colour. If we identify colours in

the Polya urn with tables in the CRP and balls in the Polya urn with customers in the

CRP, these two stochastic processes define exactly the same distribution over partitions

of balls/customers. The reason we introduce the urn model is that the initial construction

of a nonparametric Bayesian Markov model in chapter 3 is based on a variation of the

Polya urn scheme.

Since the Polya urn scheme is so similar to the CRP, in what follows we assume the

Polya urn is implicit when we mention the CRP.

The Dirichlet Process

Next we introduce the Dirichlet Process: this object is in essence a probability distribution

over probability distributions. This third perspective on essentially the same distribution

as the CRP will allow us to more easily extend infinite capacity models to hierarchical

Bayesian models.
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The Dirichlet Process (DP) (Ferguson, 1973) is a distribution over probability distri-

butions with some very specific properties. Before we give the formal definition, let us

give some intuitions. First of all since a DP is a distribution over distributions, if we

draw a sample from a DP we get a distribution; we write G ∼ DP to mean that G is a

sample from a DP. Next, since distributions are over spaces of objects we are interested

in, say real vectors, we must specify the space over which G is a distribution: we will use

Θ to denote this space.

Since G is a distribution over Θ it must either: a) assign probability mass (possibly

zero) to all the points in Θ if Θ has a countable cardinality or b) assign probability mass

to all subsets1 of Θ. This means we can ask questions like: what is the probability mass

in some set A ⊂ Θ according to G; we write this as G(A). Now we give the formal

definition of a DP.

Definition 1. Let H be a probability distribution over Θ and α be any positive real num-

ber; we say G is a draw from a Dirichlet process with concentration parameter α and base

distribution H, or G ∼ DP(α,H), if and only if for any finite partition A1, A2, · · · , An
of Θ, (G(A1), · · · , G(An)) ∼ Dirichlet(αH(A1), · · · , αH(An)).

In other words, G is a draw from a DP if all its possible finite marginal distribu-

tions are Dirichlet distributed. It is nontrivial to show that a measure with the property

above actually exists. Originally, this was shown using Kolmogorov’s Consistency The-

orem (Ferguson, 1973); a more recent construction is based on the normalized Gamma

process (James et al., 2006).

From the DP’s definition we can intuitively explain why α is called the concen-

tration parameter and H is called the base distribution. First we consider the role

of H and assume α = 1: from the properties of the Dirichlet distribution2 we know

that E[G(Ai)] = H(Ai). Thus we can think of H as specifying where the mass of

G is distributed, on average. Assume now that H is fixed and let α → 0. Since

(G(A1), G(A2), · · · , G(An)) is a draw from a Dirichlet distribution with very small α, we

know that (G(A1), G(A2), · · · , G(An)) will be sparse: one subset Ai will get most of the

mass while the others tend to 0. As α→∞ the distribution of (G(A1), G(A2), · · · , G(An))

will get closer to (H(A1), H(A2), · · · , H(An)). This rough intuition explains the names

concentration and base distribution. In what follows we will build more intuition about

the form that a draw from a DP takes.

As we mentioned above, if G ∼ DP(α,H), G is a distribution and we can draw samples

θn ∼ G. We will show next that if θ1, · · · , θN are draws from G they exhibit a clustering

property equivalent to the CRP. Let us derive an expression for the posterior distribution

G|θ1, · · · , θN . First of all we show that the posterior of G is a DP again. For any partition

1Technically, G must assign probability mass to all elements of a σ-algebra over Θ.
2See appendix A for more background on the Dirichlet distribution.
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A1, · · · , Al, let ci be the number of θ’s in Ai: ci = |{k|θk ∈ Ai}|. Because of the conjugacy

of the Dirichlet and multinomial distributions, we have that

(G(A1), · · · , G(Al)) ∼ Dirichlet(αH(A1) + c1, · · · , αH(Al) + cl). (2.2)

Since this is true for any partitioning of Θ, G|θ1, · · · , θN satisfies the defining property of

a DP and hence the posterior is a DP again. Now we want to derive an explicit update

for the posterior of the concentration parameter and base distribution. Let θ∗1, · · · , θ∗l be

the unique values among θ1, · · · , θN . Choose a partition A1, · · · , Al, Al+1, · · · , Al+k such

that Ai = {θ∗i } and Al+1 ∪ · · · ∪ Al+k = Θ \ A1 \ · · · \ Al. Let ci be the number of θn’s

that are equal to θ∗i : ci = |{k|θk ∈ Ai}|. From the definition of a Dirichlet process and

the conjugacy of the Dirichlet and multinomial distributions we have

(G(A1), · · · , G(Al+1)) ∼ Dirichlet(αH(A1) + c1, · · · , αH(Al) + cl, αH(Al+1), · · · , αH(Al+k))

∼ Dirichlet(c1, · · · , cl, αH(Al+1), · · · , αH(Al+k)). (2.3)

Since this holds for any partition of the space Θ, this is by definition again a Dirichlet

Process with concentration parameter α +N and base measure
αH+

∑N
n=1 δθn

α+N
.

Equation (2.3) allows us to compute the predictive distribution θN+1|θ1, · · · , θN as

follows. Choose any set A ⊆ Θ and let us compute p(θN+1 ∈ A|θ1, · · · , θN). We integrate

out the DP G and find

p(θN+1 ∈ A|θ1, · · · , θN) =

∫
p(θN+1 ∈ A|G)p(G|θ1, · · · , θN)dG

=

∫
G(A)p(G|θ1, · · · , θN)dG

= E[G(A)|θ1, · · · , θN ]

=
1

α +N

(
αH(A) +

N∑
n=1

δθn(A)

)

=
α

α +N
H(A) +

l∑
i=1

ci
α +N

δθ∗i (A).

How should we interpret this formula? If we let A = Θ \ {θ1, · · · , θn}, then we find

θN+1|θ1, · · · , θN ∼ H with probability α
α+N

. In other words with probability α
α+N

, θN+1

is a draw from the base measure H. If we let A = {θ∗i } then θN+1 = θ∗i with probability
ci

α+N
. This means that with probability ci

α+N
the new draw will be equal to an existing

θ∗i . This argument makes it clear that draws from G cluster together around the same θ∗i ;

hence we will often refer to the θ∗i as atoms of the distribution G. Note how the predictive

probabilities are exactly the same as the one generated by the CRP.

There is a deeper mathematical connection between the DP and the CRP. Recall that

the CRP defines an exchangeable distribution on the table assignments. The de Finetti
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theorem (Aldous, 1983) says that for any infinitely exchangeable distribution x1, x2, · · ·
there exists a random measure F , called the de Finetti mixing distribution which renders

the xi conditionally independent, in equations

p(x1, · · ·xN) =

∫ N∏
n=1

P (xn)F (dP ). (2.4)

This is quite a remarkable theorem. The exchangeability condition is a very natural

assumption to make: it essentially says that the order of the data points does not play

a role in the probability of a dataset. E.g. for the Sloan Digital Sky survey problem

we analyzed in section 1.1, it is unimportant which data point we call observation 1 and

which data point we call observation 2: this information is irrelevant with respect to

the problem we are solving. The de Finetti theorem now says that if the order of the

data points is irrelevant, there must be an underlying statistical model, potentially very

complicated, which renders the data points conditionally independent. Applying the de

Finetti theorem to the CRP, there must be a random measure F so that the samples

from the CRP are conditionally independent. It can be shown that the de Finetti mixing

distribution for the CRP is the DP.

The Stick Breaking Construction

A final perspective on the CRP and DP comes in the form of the stick breaking con-

struction by Sethuraman (1994). This will prove to be a valuable addition to our set of

representations for the DP on which we can build slice sampling inference algorithms.

∀k ∈ {1, · · · ,∞},
βk|α ∼ Beta(1, α)

πk|β1:k = βk

k−1∏
l=1

(1− βl)

θk|H ∼ H

G(·)|π, θ =
∞∑
k=1

πkδθi(·)
i = 1 ¢ ¢ ¢1

i = 1 ¢ ¢ ¢1

GG

¼i¼i

µiµi

i = 1 ¢ ¢ ¢1

¯i¯i

Figure 2.2: Graphical model for a Dirichlet process built using the stick-breaking con-

struction.

The CRP representation suggests that a DP can be represented by a countable (one

for each table) number of atoms. In other words, we expect to be able to express the
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DP as a weighted sum of point masses. Sethuraman (1994) shows this intuition holds

and derives the distribution for the mixture weights. The construction can be described

as follows: we start with a stick of length 1 and draw β1 ∼ Beta(1, α). We break a β1

fraction off the stick and assign its length to a variable π1. Then we draw a new variable

β2 ∼ Beta(1, α) and break a fraction from the remaining stick (of length 1−π1) and assign

its length to π2. We iteratively break new chunks off ad infinitum. Finally, we draw an

atom θi ∼ H for each stick πi and construct the following density: G(·) =
∑∞

k=1 πkδθi(·).
Figure 2.2 shows the graphical model for the stick breaking construction.

Sethuraman (1994) showed that G ∼ DP(α,H). The argument is roughly as follows:

if G ∼ DP(α,H) and x ∼ G then G|x ∼ DP(α + 1, H + δx(·)). We also know that

G({x}) ∼ Beta(1, α) from the defining property of the DP. It can be shown (Hjort

et al., 2010, section 2.2) that the DP satisfies a self-similarity property: restricted to

the complement set {x}c, G still follows a DP with parameters DP(α,H). Hence, we can

sample from the base distribution and a stick length from Beta(1, α) to find the location

and weight of the one atom of the DP and then recurse. We will often use the shorthand

notation π ∼ Stick(α) to denote the distribution over π.

Figure 2.3: Visualisation of a Dirichlet process with Gaussian base measure.

Figure 2.3 illustrates how one can imagine a Dirichlet process; as an infinite collection

of sticks at random points in the space spanned by the base measure H. The sticks

represent probabilities and must sum up to one. The locations of the sticks are random

draws from the base measure H.

Infinite Mixture Models

We motivated this section as a way to build infinite mixture models: we now conclude our

discussion by describing an abstract infinite mixture model using the different construc-

tions described above. The infinite limit in section 1.2 and Polya urn are equivalent to

the CRP so we leave these out of our discussion. We will assume that the parameters of

the mixture components come from an arbitrary base distribution H and the likelihood

model is F .
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To extend the CRP into a full blown mixture model we first draw a table assignment

from the CRP: p(c1:N |α). Then for each table i we draw parameters θi ∼ H. Finally,

we add a likelihood p(xn|cn, θ) by independently drawing data from a likelihood model

xn ∼ F (θcn).

We can extend the DP into a mixture model by first drawing G ∼ DP(α,H). Then

for each data point we draw θn ∼ G and xn ∼ F (θn). Because of the properties of the

DP described above the parameters θn will cluster together.

Finally, we can use the stick breaking construction to build a mixture model as follows.

First we draw π ∼ Stick(α) and an infinite set of atoms θi ∼ H for i ∈ {1 · · ·∞}. Then,

for each data point n we draw a cluster assignment cn ∼ π and set xn ∼ F (θcn).

Figure 2.4 illustrates the graphical model for each of these three constructions.

i = 1 ¢ ¢ ¢1

n = 1 ¢ ¢ ¢ N

c1:Nc1:N

xnxn

µiµi

®®

HH

∀n ∈ {1 · · ·N},
∀i ∈ {1 · · ·∞},

c1:N |α ∼ CRP(α)

θi|H ∼ H

xn|θcn ∼ F (xn|θcn)

n = 1 ¢ ¢ ¢ N

µnµn

GG

xnxn

®® HH

∀n ∈ {1 · · ·N},
G|α,H ∼ DP(α,H)

θn|G ∼ G

xn|θn ∼ F (xn|θn)

i = 1 ¢ ¢ ¢1

n = 1 ¢ ¢ ¢ N

cncn

¼¼

xnxn

µiµi

®®

HH

∀n ∈ {1 · · ·N},
∀i ∈ {1 · · ·∞},

π|α ∼ Stick(α)

θi|H ∼ H

cn|π ∼ π

xn|θcn ∼ F (xn|θcn)

Figure 2.4: Comparison of three different constructions of an infinite capacity mixture

model. Left: using the CRP; middle: using the DP; right: using the stick-breaking

construction.

2.1.2 Inference

There are a number of inference tasks related to infinite mixture models. The most

common task is to find the posterior partitioning of the data points: which data points

belong to which cluster? The most common inference algorithms are based on the CRP

and stick breaking representation where inference amounts to computing the posterior
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distribution p(c1:N |x1:N , α,H, F ). As a (deterministic) side effect, we can easily compute

the posterior distribution over the number of clusters from this representation. Another

common task is to infer the posterior distribution of cluster parameters, the θi in the

CRP, DP and stick breaking constructions. Finally, one might be interested in learning

the posterior for the concentration measure of the DP: p(α|x1:N , α,H, F ). This task

requires us to introduce a prior distribution on α; since α needs to be positive, a Gamma

distribution is a common choice.

All of the posterior distributions mentioned above are analytically intractable to com-

pute but various approximate inference algorithms exist. All currently known techniques

can be classified into two categories: the deterministic optimisation based methods and

the randomised MCMC methods. Blei and Jordan (2006) pioneered a variational approx-

imation to the DP mixture by approximating the DP posterior with a truncated stick

breaking representation. Kurihara et al. (2007a) further explored the space of truncated

variational approximations by deriving a collapsed variational approximation scheme and

comparing it to the scheme in Blei and Jordan (2006) and to a standard finite mix-

ture model based on a symmetric Dirichlet prior on the mixture components. Kurihara

et al. (2007b) further extended the method in Kurihara et al. (2007a) using kd-trees

for improved computation time. Zobay (2009) performs a careful analysis of variational

optimisation for the DP mixture and makes several remarkable conclusions:

1. The fixed point iterations in variational solutions suppress the attachment of data

points to new components.

2. The collapsed variational solutions quantitatively lead to very similar results as the

uncollapsed solutions.

3. Posterior inference on the concentration parameters α generally leads to overconfi-

dent approximations; with larger truncation levels, the approximation on α becomes

a delta spike with a constant mean.

4. Predictive distributions under the variational approximation are often good, whereas

there generally are strong discrepancies regarding clustering and number of poste-

rior components compared to the true posterior.

Minka and Ghahramani (2003) describe a variational solution based on the expectation

propagation algorithm. This result is exciting as it does not rely on a truncated approx-

imation. Its main disadvantage is that the approximating posterior does not exhibit the

clustering properties of a DP: each data point sits in its own cluster with no overlap in

cluster parameters between the data points.

In the class of deterministic algorithms there are other inference algorithms based on

combinatorial search which are often superior to the variational algorithms above while
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much simpler to implement. The first is the tree based search algorithm of Xu et al.

(2009). This algorithm manages to efficiently integrate the CRP over an exponential

number of partitions. Another noteworthy algorithm is the A* based search algorithm

in Daume (2007).

Various MCMC algorithms for DP mixtures have been introduced (Neal, 1991, MacEach-

ern, 1994, Escobar, 1994, Escobar and West, 1995, MacEachern and Müller, 1998, Ras-

mussen, 2000, Ishwaran and James, 2001, Porteous et al., 2006, Papaspiliopoulos et al.,

2008). A great overview paper comparing various algorithms is Neal (2000). We briefly

describe a collapsed Gibbs sampler as it is the foundation for one of our sampling algo-

rithm in chapter 3.

This collapsed Gibbs sampler uses the CRP representation and only resamples the

cluster assignments c1:N . The algorithm, illustrated in algorithm 1 is extremely simple. In

Algorithm 1 The collapsed sampler for the DP mixture.

Initialise c1:N randomly.

loop

for n = 1 to N do

Sample cluster assignments cn|c−n, x1:N , F,H, α

end for

end loop

each iteration, each cn is re-sampled from its posterior distribution p(cn|c−n, x1:N , F,H, α) ∝
p(cn|c−n, α) · p(xn|x−n, cn, F,H). The prior contribution p(cn|c−n, α) is trivial to com-

pute: because of exchangeability, we can assume data point n is the last data point,

hence p(cn|c−n, α) ∝ mcn where mcn is the number of data points in cluster cn or α

when cn represents a new cluster. The likelihood contribution p(xn|x−n, cn, F,H) can be

computed analytically when the base distribution H is conjugate to the likelihood F :

p(xn|x−n, cn, F,H) =
∫
dθp(xn|θ)p(θ|x−n, cn, F,H).

In our next chapter we will construct a sampler that is inspired by yet a different type

of sampler for the DP mixture: the slice sampler (Neal, 2003, Walker, 2007, Kalli et al.,

2008). Because of its relevance to our thesis we briefly review the core idea here. The

slice sampler, based on the stick breaking construction, re-samples the mixture weights

π and the cluster assignments c1:N . Algorithm 2 describes the sampler.

Using the marginalisation property of the DP, we know that we can sample the mixture

parameters as π ∼ Dirichlet(m1,m2, · · · ,mK , α) where the last element represents the

mass of all new clusters. The crucial step is re-sampling the cluster assignments; for each

n ∈ {1 · · · , N}, we need to sample from p(cn|π, un, F,H). Using Bayes rule, we know

p(cn|x1:N , un, π, F,H) ∝ p(un|cn, π) · p(xn|x−n, F,H) (2.5)
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Algorithm 2 The slice sampler for the DP mixture.

Initialise c1:N randomly.

loop

Sample the mixture parameters π|c1:N , α

Sample auxiliary variables un ∼ Uniform(0, πcn)

Sample cluster assignments c1:N |π, u1:N , x1:N , F,H

end loop

From the collapsed Gibbs sampler we already know that

p(xn|x−n, F,H) =

∫
dθp(xn|θ)p(θ|x−n, cn, F,H) (2.6)

which can be computed analytically when H is conjugate to the likelihood F . We can

write the uniform distribution on the auxiliary variable as p(un|cn, π) = 1
πcn

I[0 ≤ un ≤
πcn ]. The key insight into equation (2.5) is that although cn can take on any of an

infinite number of cluster assignments (the K currently occupied clusters or any of the

infinite number of remaining clusters), any assignment needs to satisfy the I[0 ≤ un ≤ πcn ]

constraint: we cannot assign cn to a cluster such that πcn < un. There can only be a finite

number of clusters that satisfy this constraint since
∑

i πi = 1. Hence, in each iteration,

for each data point, we only need to consider a finite number of cluster assignments.

The slice sampler thus adaptively truncates the DP mixture using auxiliary variables. In

that sense it combines the computational advantages of a truncated representation while

maintaining the property that all samples represent the true posterior distribution.

We conclude this section with a brief description of methods to estimate the param-

eters of the DP. The most common method for learning the concentration parameter

and base measure is a full Bayesian treatment. More specifically, for the concentration

parameter we can use the property that the posterior p(α|c1:N) is only dependent on the

number of clusters K in the sample represented by c1:N

p(α|c1:N) = p(α|K,N) ∝ p(K|α,N)p(α), (2.7)

where from Antoniak (1974) we know that p(K|α,N) ∝ αK Γ(α)
α+N

. In Escobar and West

(1995) an auxilary variable sampler is introduced to sample from the posterior p(α|c1:N):

it uses the property that when the prior p(α) is a Gamma distribution, the posterior is

the marginal of a bi-variate distribution that is a mixture of two Gamma distributions

and a Beta distributed auxiliary variable. Rasmussen (2000) uses the property that the

posterior on α is log concave so the adaptive rejection sampler can be used for re-sampling

α. McAuliffe et al. (2006) uses an empirical Bayes estimate of α by using the property

that the marginal maximum likelihood estimate of α must satisfy

E[K] =
N∑
n=1

α

α + n− 1
. (2.8)
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The left hand side can be estimated using the samplers described above; then numerical

optimisation can be used to solve for α.

A second parameter which can be learned from data is the base measure of the DP.

(Hjort et al., 2010, chapter 7) discusses this problem in full detail and offers three solu-

tions. The first is a full Bayesian treatment for estimating the base measure; we refer to

section 2.2 for an application of this idea. Another possibility is to use an empirical Bayes

estimate of the base measure, McAuliffe et al. (2006) describes this approach in detail

and gives an example using kernel density estimates. A final alternative is to explicitly

specify the base distribution using prior knowledge.

2.1.3 Properties

The CRP, DP and its stick breaking construction have a number of interesting properties

which we need to understand for applied statistics using this Bayesian nonparametric

distribution.

Number of Clusters We can easily derive the distribution on the number of partitions

K in the CRP: let In be an indicator variable for the event that customer n sits at

a new table. Then K =
∑N

n=1 In and each In ∼ Bernoulli(α/n) independently. It is

then straightforward to see that E[K] =
∑N

n=1 E[In] =
∑N

n=1
α
n

= αHn where Hn is the

nth Harmonic number. Pitman (2006) strengthens this result to show that K converges

in distribution to a Normal(log(n), log(n)) random variable. Figure 2.5 illustrates the

scaling of the number of partitions K as the number of customers N in a CRP and the

concentration parameter α varies. These plots were obtained by sampling from a CRP;

for each parameter setting, 100 CRP samples were taken and the mean and standard

deviation K in the 100 samples were computed. The scaling with varying N used an

α = 1 concentration parameter whereas the scaling with varying α used N = 100000

customers. The left plot in figure 2.5 shows the logarithmic growth of the number of

clusters, a least squares fit results in a trend line y = 0.9599 ln(x) + 0.8046. The right

plot in figure 2.5 shows the linear growth in function of α. Note how in both plots the

variance increases with increasing parameter.

Distribution of Cluster Sizes Another important property of the DP is how the cluster

sizes are distributed. We perform the following experiment: we sample 2000 DP’s each

with N = 10000 customers and α = 1. For each sample, we order the clusters according

to size and compute the mean cluster size at each rank. Figure 2.6 shows the log cluster

size versus log rank.

The key property to point out from this plot is how fast the log mean cluster size

decreases with increasing rank. Many natural phenomena show power-law behaviour:
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Figure 2.5: Empirical scaling behaviour of the number of partitions. In the left plot we

fix α = 1 and vary the number of customers N ; in the right plot we fix N = 100000 and

we vary the concentration parameter α.

Figure 2.6: Log-log plot of mean cluster size versus cluster rank. The black line shows

the mean cluster rank, the blue dots show the actual datapoints for the first 20 samples.

the number of clusters of size k is proportional to ck. Power-law behaviour would result

in many small clusters; given the fast decrease of the log mean cluster size we expect

that the DP cluster sizes do not follow a power-law. Indeed, it is the generalisation of

the DP, called the Pitman-Yor process (Pitman and Yor, 1997) that exhibits power-law

behaviour. We will return to this distribution in chapter 3.

Dependency on α Antoniak (1974) proves that the distribution of the number of clus-

ters K conditional on α can be written as

p(K|α) ∝ αK
Γ(α)

Γ(α +N)
(2.9)

where the normalisation constant involves Stirling numbers of the second kind. This is

an important distribution when we want to learn α in a hierarchical Bayesian fashion.

42



We perform the following experiment: we put a Gamma prior on α and try to learn the

posterior p(α|K). First of all, note that this is a much easier task than learning α from a

full mixture model: we assume full knowledge of K whereas in a full mixture model this

variable is unknown as well. The posterior on α can be written as

p(α|K) ∝ p(K|α)p(α|a, b) ∝ αa+K−1 Γ(α)

Γ(α +N)
e−bα. (2.10)
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Figure 2.7: Gamma(2.0, 0.5) prior (blue) and posterior (red) distribution for a DP with

N = 100 customers and varying number of clusters K.

Figure 2.7 illustrates a prior on α and the corresponding posterior for a DP with

N = 100 customers. The interesting observation to make here is that when the number of

clusters K is large, the posterior is rather similar to the prior. This is an often overlooked

fact in the literature: the marginal likelihood p(K|α) gives very little information about

the true value of α when K is large. In other words, we cannot learn a very specific

value of α for problems with a large number of clusters. Note that when K is not known

exactly (as in a mixture model), the variance on α can only increase further. We will

have to consider this effect carefully in applied problems involving the DP.

2.1.4 Discussion

Applications of the DP are numerous; ranging from statistical models in physics and bio

statistics to machine learning and natural language processing; we refer to the overview

paper (Teh, 2010) for a brief summary and further references. An area which we haven’t
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touched upon are asymptotic properties of the DP such as posterior consistency and

convergence rates. We refer to (Hjort et al., 2010, chapter 2) for an overview of the

current state of the art in this area.

2.2 Chinese Restaurant Franchises and Hierarchical Dirich-

let Processes

A common technique in Bayesian modelling it that whenever we are unsure about a

parameter in our model, we assume it is a random variable, introduce an appropriate

prior and learn about the parameter through data. As we discussed previously, in the

case of the DP, if we do not know the base measure but we have several experiments in

which it interacts, we can build a hierarchical Bayesian model involving the base measure

of a DP as a random variable. In this next section we consider this model in more detail.

Consider the problem where we are given measurements of multiple patients in differ-

ent hospitals and we need to cluster patients. We could cluster the patients using a DP

mixture for each hospital separately but this would very likely result in clusters across

hospitals being different. We might believe that clusters of patients in one hospital also

exist as clusters in a different hospital. In other words, we would like to share clusters

between hospitals. More formally, we want to model the following data set: we have mea-

surements xji where j ∈ {1 · · · J} denotes the group of the data points and i ∈ {1 · · ·nj}
denotes the i’th data point in group j. We now want to cluster the data points in each

group such that cluster parameters are shared between groups.

The hierarchical Dirichlet process (HDP) introduced in Teh et al. (2006a) addresses

this problem. In section 2.1 we introduced the Dirichlet process as a way to share cluster

parameters (the atoms of the DP) between data points. In our hospital setting we still

want to share cluster parameters between data points but different hospitals ask for

different mixture probabilities (or atom weights): the HDP addresses exactly this issue.

2.2.1 Definition and Constructions

Just as with the DP, we will describe a measure theoretic construction, a combinatorial

process and a stick breaking construction for essentially the same distribution.

The Hierarchical Dirichlet Process

Section 2.1.1 showed how a DP can be represented as an infinite mixture of atoms drawn

IID from the base measure H: G(·) =
∑∞

k=1 πkδθi(·). We now investigate the role of the

base measure H on the infinite mixture by drawing two DP’s G1(·) =
∑∞

k=1 πkδθ1i(·) and

G2(·) =
∑∞

k=1 πkδθ2i(·) from the same base measure. If H is a continuous measure, say
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a multivariate Gaussian distribution, then all θ·i ∼ H will be different almost surely. In

particular, G1 and G2 will almost surely not share any atoms. On the other hand, if H is

a discrete measure (either finite or infinite) it is easy to show that G1 and G2 will share

atoms. To see this, consider any atom from G1, say θ1i. Since H is discrete, H(θ1i) is a

nonzero probability. Using the stick-breaking construction of the DP we know that when

we construct G2 we will draw a countable infinite number of atoms from H and hence

with probability one draw θ1i at least once. In other words, G1 and G2 will almost surely

share atoms.

∀j ∈ {1 · · · J},
∀i ∈ {1 · · ·nj},

G0|γ,H ∼ DP(γ,H)

Gj|α,G0 ∼ DP(α,G0)

θji|Gj ∼ Gj

xji|θji ∼ F (θji)

j = 1 ¢ ¢ ¢ J

i = 1 ¢ ¢ ¢ N

µijµij

G0G0

xijxij

°° HH

GjGj®

Figure 2.8: The graphical model for a Hierarchical Dirichlet Process.

This insight suggests the following approach for our group clustering problem: we

define an appropriate discrete base measure G0 for the parameters of the clusters and

then draw a Gj ∼ DP(α,G0) for each group j ∈ {1 · · · J}. If G0 is a finite discrete

measure the Gjs will share cluster parameters but there will only be a finite number of

them. This would be a step back to parametric modelling. Hence, we would like G0 to

be an infinite discrete measure: we can achieve this by letting G0 be a draw from a DP

itself! Figure 2.8 shows the generative model for this construction which has been coined

the hierarchical Dirichlet process. Note that the HDP can be extended to more than two

levels by setting up a tree structure where each node is a DP with its parent as the base

measure and that the distribution defined by the HDP is still exchangeable in customers
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but is now also exchangeable in the groups.

The Stick Breaking Construction

A natural question one could ask is whether a stick-breaking representation for the HDP

exists. Fortunately it does and in this section we will describe how the construction

works. Let us consider the graphical model for the HDP in figure 2.8. The stick-breaking

construction of the DP in section 2.1.1 learns us that we can write

G0(·) =
∞∑
k=1

π0kδθk(·) (2.11)

with π0 ∼ Stick(γ). From the previous section we know that each Gj will have exactly

the same set of atoms as G0. In other words, we can write

Gj(·) =
∞∑
k=1

πjkδθk(·) (2.12)

where the question is: what form does the vector πj take? In other words, we want to

know how much probability mass Gj assigns to each atom θi. This follows directly from

the definition of the DP: let us consider the first k atoms and define a partitioning of Θ

(the space of our atoms) into k singleton sets A1, · · · , Ak with Ai = {θi} and one set to

cover the rest of Θ namely Ak+1 = Θ \A1 \ · · · \Ak. The definition of a DP now dictates

that the marginals induced by the partitioning follow a Dirichlet distribution

(Gj(A1), · · · , Gj(Ak), Gj(Ak+1)) ∼ Dirichlet(αG0(A1), · · · , αG0(Ak), αG0(Ak+1)).

(2.13)

By construction, Gj(Ai) is the probability of an atom appearing in set Ai but since Ai

is the singleton set {θi} we know that Gj(Ai) directly specifies the probability mass on

atom i; in other words Gj(Ai) = πji. Similarly Gj(Ak+1) is the probability of an atom

appearing in set Ak+1. Since Ak+1 covers all atoms other than the first k we know that

Gj(Ak+1) =
∑∞

l=k+1 πjl. Note that these two properties also hold for j = 0. Then it

follows that(
πj1, · · · , πjk,

∞∑
l=k+1

πjl

)
∼ Dirichlet

(
απ01, · · · , απ0k, α

(
∞∑

l=k+1

π0l

))
. (2.14)

Intuitively, equation (2.14) says that any finite representation of Gj follows a Dirichlet

distribution around the stick representation of G0. Equation (2.14) also makes clear the

role of the random variable α: if α is small the Dirichlet distribution will introduce a lot

of variability between different Gj’s, while if α is large, each Gj will be very similar to

G0 and hence also to each other. Finally, after some algebraic manipulation it can be
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Figure 2.9: Visualisation of the hierarchical Dirichlet process. Left: the stick-breaking

representation of the base measure; right: the stick-breaking representations of the child

Dirichlet processes.

shown (Teh et al., 2006a) that equation (2.14) is similar to the following stick-breaking

construction: let βjk ∼ Beta
(
απ0k, α

(
1−

∑k
l=1 π0l

))
, then πjk = βjk

∏k−1
l=1 (1− βjl).

The stick-breaking representation allows us to visualise the hierarchical Dirichlet pro-

cess: since G0 and all Gjs are DP’s, we can visualise the sharing of atoms by considering

the stick breaking representations. Figure 2.9 shows how G0 consists of draws from a

Gaussian base measure H and each Gj in turn shares the same atoms as G0 but has

slightly different weights. From the stick breaking properties of the DP we know that the

hyper parameter γ in the HDP controls how fast the stick weights decay for G0; in other

words, it directly influences the amount of clusters we are likely to see.

The Chinese Restaurant Franchise

Analogous to the CRP representation of a DP we introduce the Chinese restaurant fran-

chise (CRF) representation for the HDP. In this metaphor there are multiple restaurants

that share a menu. Each restaurant corresponds to a group of data points while each

dish on the menu corresponds to an atom in Θ. Each restaurant has a potentially infinite

number of tables and at each table one particular dish is served. Different tables in a

restaurant can serve the same dish.

Customer xji will sit at table tji in restaurant j. Each dish on the shared menu will

be denoted with θi while we introduce the index kjt to denote the dish that is served at

table t in restaurant j; in other words, at table t in restaurant j, customers are eating
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dish θkjt . We denote with θji the dish that is eaten by customer i in restaurant j. Let njt

be the number of customers sitting at table t in restaurant j and let mk be the number

of tables serving dish k in all restaurants.

The Chinese restaurant franchise works as follows: in each restaurant, the customers

enter sequentially. A customer decides to sit down at occupied table t with probability

proportional to njt and decides to sit at a new table with probability proportional to α.

If he sits at an occupied table he eats dish θkjt , whereas if he decides to sit at a new table

he orders a dish k that has been ordered before with probability proportional to mk and

he orders a new dish with probability proportional to γ.

We can now derive the predictive distribution of the indicator variables tji and kjt by

integrating over G0(·) and Gj(·)

p(tji|t−ji, α) ∝
∑
t

njtδ(tji, t) + αδ(tji, t̄)

p(kjt|k−jt, γ) ∝
∑
k

mkδ(kjt, k) + γδ(kjt, k̄)

where t−ji denotes all customer-table assignments except for customer ji, k−jt denotes

all table-dish assignments except for table jt, t̄ denotes a new table and k̄ denotes a new

dish. A convenient way to look at the CRF is that each table represents a draw from

G0(·) and each customer represents a draw from some Gj(·).

2.2.2 Inference

Teh et al. (2006a) describe three different Gibbs samplers for the HDP; we briefly list

the main ideas here and refer to the paper for full details. The first sampler, called

Posterior Sampling in the CRF, re-samples tji and kjt while integrating out the base

measure G0(·). This sampler couples the variables tji and kjt for different restaurants

j; a second sampler, named the Posterior Sampling with an Augmented Representation,

explicitly samples tji, kjt and a stick breaking representation of G0(·) through the stick

variables β. This decoupling can sometimes improve mixing times. A third sampler,

the Posterior Sampling by Direct Assignment, only tracks the assignments of variables to

mixture components through the variables zji = ktji , rather than the indirect association

using tji and kjt. As far as we are aware, a thorough evaluation of all three samplers

has not been performed but the direct assignment sampler is often preferred because of

simpler bookkeeping. Johnson et al. (2009) improve the above samplers for the HDP by

removing unnecessary representations.

There has been very little work on deterministic inference methods for the HDP.

The collapsed variational inference scheme in Teh et al. (2008) is a variational inference

scheme for a two level HDP. Although the method is computationally efficient, empirical

evaluations suggest it is less accurate than the Gibbs samplers.

48



2.2.3 Discussion

We showed how the HDP is the natural extension of the DP for hierarchical Bayesian

modelling. One interesting theoretical result is how the HDP can be recovered as the

infinite limit of a finite hierarchical Bayesian mixture model (Teh et al., 2006a); analogous

to the limit construction of the DP.

It can be shown that the number of clusters in the HDP grows as O(log(J)+log logN)

where J is the number of child DP’s and N is the number of data points per child DP.

This is extremely slow growth with respect to N and is often an inappropriate prior. In

(Hjort et al., 2010, chapter 5), an overview of possible relaxations of the HDP assumption

are described.

2.3 Indian Buffets and Beta Processes

The mixture models we have seen so far assume the existence of an (unknown) number

of classes and postulate that each data point belongs to one and only one class. When

we design a spam filter an email is either spam or ham; when we build the tree of life

by clustering DNA, a sequence is either from Eubacteria, Archaea or Eukarya, ... This

assumption is a useful one in the examples given but it is also rather limiting in other

applications. Consider the news article abstract below.

Choosing Beijing Was a Drastic Mistake

The question as to how free reporters will be to cover the Olympic

Games still hasn’t been solved to everyone’s satisfaction. Commen-

tators in Germany say the spirit of the Olympics is at stake. Just

days before the Aug. 8 opening ceremonies usher in the 2008 Bei-

jing Olympics, reporters from around the world who are in China

to cover the games are pulling their hair out. Two things, in par-

ticular, are driving them nuts: not knowing what they will be able

to cover and not knowing how much the Chinese government will

censor their online coverage ...

Table 2.1: News article from Spiegel Online, August 4 2008: http://www.spiegel.de/

international/world/0,1518,569903,00.html

It would be wrong to classify this article as a pure sports article as it probably has

a political message too. The mixture model assumption doesn’t seem appropriate here.

We would rather say that an article can have a number of themes some of which are

present, some of which aren’t. This idea has been introduced in the machine learning
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∀m ∈ {1 · · ·M},
∀n ∈ {1 · · ·N},

Am· ∼ Normal(0,Σ)

znm ∼ Bernoulli(πm)

xn· ∼ Normal(znA, σ
2I)

m = 1 ¢ ¢ ¢ M

n = 1 ¢ ¢ ¢ N

xnxn

Am¢Am¢znmznm¼m¼m

Figure 2.10: The graphical model for a finite factor model.

literature as latent feature models or factor models Barlow (1989), Hinton and Zemel

(1994), Ghahramani (1995).

A simple example of a factor model is the following generative procedure. There is

a set of M unknown features Am· each drawn from a multivariate normal distribution.

Whether data point n possesses feature m is indicated by the variable znm. The znm form

a binary N by M feature matrix Z. Let πm be the probability that a data point possesses

feature m, then znm ∼ Bernoulli(πm) independently for all n. The observation for data

point n is generated by summing up all features with znm = 1 and adding Gaussian noise:

xn ∼ Normal(znA, σ
2). Figure 2.10 illustrates the graphical model for the factor model.

One could argue that the factor model is equivalent to having a clustering model with

2M clusters (one cluster for each configuration of the latent features). However note that

in the factor model, the cluster parameters Am· would be very strongly dependent as

they should all be sums of a set of M “base vectors”. Hence it is much more reasonable

and tractable to learn factorised representations than an exponentially larger amount

of clusters. Similarly to the finite mixture model, the model in figure 2.10 explicitly

represents the number of features M . We now turn to Bayesian nonparametric methods

to explicitly model the uncertainty in the number of features.

2.3.1 Definition and Constructions

Central to the factorial model defined in figure 2.10 is the N by M matrix Z which

specifies for all data points which of the M features are present. To turn this into a

nonparametric distribution requires us to extend Z to have a potentially infinite number

of columns. Our description will follow the same recipe as in the mixture model setting.
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First we define a nonparametric distribution using a stochastic process following Griffiths

and Ghahramani (2006). Then we define the same distribution by taking the infinite

limit of a finite factorial model. Next we describe the de Finetti mixing distribution for

the nonparametric object following Thibaux and Jordan (2007). Finally, we introduce an

explicit stick-breaking representation based on the work in Teh et al. (2007).

The Indian Buffet Process

The Indian Buffet Process is a procedure for generating a binary matrix Z with a specific

number of rows and a potentially unbounded number of columns. It is very similar to

the Chinese restaurant process which we’ve discussed previously.

Imagine an Indian restaurant with an infinitely long buffet of dishes. The first cus-

tomer enters the restaurant and takes a serving from each dish stopping after a Poisson(α)

number as his plate becomes overburdened. The nth customer moves along the buffet

serving himself dish m with probability cm/m where cm is the number of previous cus-

tomers who chose dishm. After reaching the end of the previously chosen dishes, customer

n tries Poisson(α/n) new dishes. Let znm be the binary indicator variable which denotes

whether customer n chose dish m. We denote with Z the matrix of all indicator variables

znm. After N customers enter the restaurant it is clear that the matrix Z will have N

rows. Moreover, as each customer samples how many new dishes they will taste from a

Poisson distribution and since this distribution can generate arbitrarily large numbers,

the matrix Z could potentially have an arbitrary number of columns. We call this process

the Indian Buffet Process or IBP. Figure 2.11 illustrates a draw from the Indian Buffet

Process.

Let us denote with M (n) the number of new dishes sampled by customer n and with

M+ the total number of dishes tried. The probability of generating a particular feature

matrix Z according to the procedure above is

p(Z|α) =
αM+∏N

n=1M
(n)!

exp{−αHN}
M+∏
m=1

(N − cm)!(cm − 1)!

N !
, (2.15)

where Hn is the nth harmonic number: Hn =
∑N

j=1
1
j
. Equation (2.15) shows that

the distribution is exchangeable as the probability distribution is only dependent on the

counts cm and not on the particular ordering of the N data points.

An Infinite Latent Feature Model

In this section we will show how we can recover the distribution induced by the IBP by

taking the infinite limit of a finite model. We will do this in three steps following Griffiths

and Ghahramani (2006): first we extend the model in figure 2.10 and do a full Bayesian

analysis. Then we introduce equivalence classes of matrices and take an infinite limit.
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Figure 2.11: Illustration of a matrix generated by the IBP with α = 10. Customer 1 chose

17 dishes, customer two chose 7 dishes sampled by customer 1 and 3 new dishes, etc ...

After 20 customers entered the restaurant, 20 dishes were sampled. (With permission

from Griffiths and Ghahramani (2006))
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A Finite Feature Model We augment the model in figure 2.10 by introducing priors

on the feature probabilities πm and integrating them out. Recall that we draw znm ∼
Bernoulli(πm) and if we want to integrate out πm it is natural to choose the conjugate

prior for the Bernoulli distribution on πm. This is the Beta(a, b) distribution with density

p(πm|a, b) =
Γ(a)Γ(b)

Γ(a+ b)
πa−1
m (1− πm)b−1. (2.16)

For reasons that will become clear later we will choose a = α/M, b = 1. We now have

the following graphical model

πm ∼ Beta
( α
M
, 1
)

znm ∼ Bernoulli(πm)

for which we want to integrate out πm. Using the conjugacy of the Bernoulli and Beta

distributions we can compute the marginal probability on Z

p(Z|α) =
M∏
m=1

∫ ( N∏
n=1

p(znm|πm)

)
p(πm|α)dπm

=
M∏
m=1

∫
πcmm (1− πm)N−cmp(πm|α)dπm

=
M∏
m=1

α
M

Γ(cm + α
M

)Γ(N − cm + 1)

Γ(N + 1 + α
M

)
, (2.17)

where cm =
∑N

n=1 znm denotes the number of datapoints that possess feature m. This

also shows that the model is exchangeable as its density only depends on the counts cm.

Equivalence Classes If we naively take the limit M → ∞ we find that any matrix Z

has probability 0. This is not a serious problem as we are not interested in the probability

of a single matrix Z. More specifically, consider a model with M = 2 and let us visualise

two different Z matrices

Although technically the left and right Z matrices are different, they encode the same

latent feature assignments up to a change of feature indices. It is common to assume that
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features are exchangeable in that our probabilistic models do not depend on an ordering

of the features. This illustrates that we really only care about feature matrices up to

permutations of the columns.

Therefore, we introduce the concept of equivalence classes of binary matrices. We

will define a function lof(·) which maps a binary matrix to its left-ordered form. Then

we define the equivalence class of a matrix to be all binary matrices which map to the

same left-ordered form. lof(Z) can be defined as follows: we interpret each column zm

of Z as encoding the binary number 2T−1z1m + 2T−2z2m + · · ·+ zNm. We call this number

the history of the column. We denote with Mh the number of columns in the matrix Z

that have history h. lof(Z) is the matrix Z with its columns left to right by decreasing

history. Let [Z] denote the set of all matrices that map to the same left-ordered form:

we call [Z] the lof-equivalence class. It is easy to check that the number of elements in

the lof-equivalence class of Z is equal to M !∏2N−1
h=0 Mh!

. Figure 2.12 illustrates a matrix and

its left-ordered form.

Figure 2.12: An example of a matrix and its left-ordered form.

Before we take the infinite limit we want to point out that lof-equivalence classes play

the same role for factor models as partitions for mixture models. E.g. imagine we have

a data set with 5 data points labelled a,b,c,d,e: we don’t distinguish between assigning

a,b,c to cluster 1 and d,e to cluster 2 or a,b,c to cluster 2 and d,e to cluster 1. This is

exactly what the partitioning achieves: it only encodes that a,b,c share the same partition

and d,e share a different partition.

The Infinite Limit In this final step we take the infinite limit of equation (2.17) for a

particular lof-equivalence class and find

lim
M→∞

p([Z]|α) = lim
M→∞

∑
Z∈[Z]

p(Z|α)

= lim
M→∞

M !∏2N−1
h=0 Mh!

M∏
m=1

α
M

Γ(cm + α
M

)Γ(N − cm + 1)

Γ(N + 1 + α
M

)
. (2.18)

We divide the columns of Z into two sets: M0 columns with cm = 0 and M+ columns

with cm > 0 implying that M = M0 +M+. We break up the product in equation (2.18)
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with respect to these two subsets

M∏
m=1

α
M

Γ(cm + α
M

)Γ(N − cm + 1)

Γ(N + 1 + α
M

)

=

( α
M

Γ( α
M

)Γ(N + 1)

Γ(N + 1 + α
M

)

)M−M+ M+∏
m=1

α
M

Γ(cm + α
M

)Γ(N − cm + 1)

Γ(N + 1 + α
M

)

=

( α
M

Γ( α
M

)Γ(N + 1)

Γ(N + 1 + α
M

)

)M M+∏
m=1

Γ(cm + α
M

)Γ(N − cm + 1)

Γ( α
M

)Γ(N + 1)

=

(
N !∏N

j=1 j + α
M

)M ( α
M

)M+
M+∏
m=1

(N − cm)!
∏cm−1

j=1 (j + α
M

)

N !
. (2.19)

Substituting equation (2.19) back into equation (2.18) and using the results from ap-

pendix C, we find the following probability for the equivalence class [Z]

lim
M→∞

p([Z]|α) =
αM+∏2N−1
h=0 Mh!

exp{−αHn}
M+∏
m=1

(N − cm)!(cm − 1)!

N !
, (2.20)

where again Hn is the nth harmonic number.

Connection to the Indian Buffet Process Note the similarity between equation (2.15)

from the IBP and equation (2.20) from the infinite factor model. Their likeness suggests

that there is a deep connection between both distributions. A natural question to ask is

whether the IBP generates left-ordered matrices. As figure 2.12 illustrates, the answer

is no. Let us then compute the number of matrices generated by the IBP that map to

the same left-ordered form. This is equivalent to computing the opposite: the number

of IBP generated matrices that can be generated from one left-ordered matrix. The key

observation in counting this number is that given a left-ordered matrix we can permute

columns that have the same most significant bit. The reason is that the only constraint

on IBP matrices is that they should be sorted by decreasing most significant bit. Since

the number of columns with the same significant bit is exactly M (n) (the number of

new dishes sampled by customer n), there are exactly
∏N

n=1M
(n)! such permutations.

This overcounts permutations of columns with the same history though. Since there are

exactly Mh! permutations for columns with history h, we conclude that∏N
n=1M

(n)!∏2N

h=1 Mh!
(2.21)

matrices generated by the IBP map to the same left-ordered form. Multiplying equa-

tion (2.21) with equation (2.15) we recover the distribution in equation (2.20). In other

words, the IBP generates the same distribution over left-ordered equivalence classes as

the infinite factor model.
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The Beta Process

In the infinite mixture model setting we argued that an exchangeable distribution must

have a de Finetti mixing distribution which renders the draws from the mixing distribu-

tion conditionally independent. In the previous two sections we discovered that the IBP

is exchangeable in the customers. The question thus arises what the de Finetti mixing

distribution for the IBP is.

Thibaux and Jordan (2007) showed that a combination of the Beta process and the

Bernoulli process is the de Finetti mixing distribution for the IBP. A thorough mathe-

matical description of the Beta process relies on the theory of Lévy processes which we

will not review here. Rather, we present an intuitive view which attempts to clarify the

connection with Dirichlet processes.

Recall the visualisation of the Dirichlet process which we replicate in the top panel of

figure 2.13. A Dirichlet process is a discrete distribution with an infinite number of atoms

randomly drawn from a base distribution H. The stick heights represent probabilities

and must sum up to one so they represent an infinite multinomial distribution. The sum-

to-one condition is natural for mixture models: each data point belongs to one class only,

the class drawn from the stick multinomial distribution. In the Beta process we want

something slightly different: each data point can posses many out of an infinite number

of features. One way to do so is to have an infinite number of atoms drawn independently

from the base measure H and for each of the atoms have a stick with length between

0 and 1 to denote the probability that a data point possesses that feature. We do not

require the sticks to sum up to one.

(a) A Dirichlet Process (b) A Beta Process

Figure 2.13: Visualisation of the Dirichlet process versus the Beta process. The sum of

the sticks in the Dirichlet process is exactly one. The only constraint on the sticks in the

Beta process is that they represent probabilities and thus are in the range [0,1]. Both

figures use the same base distribution H which is a Gaussian in this case.

We write B ∼ BP(c, B0) when B is draw from a Beta process over the space Ω

with concentration function c(·) and base measure B0. We require that c(·) is a positive

function over Ω and B0 is a measure over Ω. Technically a Beta process is a Lévy process

which means that it has independent increments (∀R, S ⊆ Ω : R ∩ S = ∅ ⇒ B(R) and
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B(S) are independent) and can be characterised by a Lévy measure on Ω× [0, 1]

ν(dω, dp) = c(ω)p−1(1− p)c(ω)−1dpB0(dω). (2.22)

The intuitive interpretation of this measure is best described as a way to draw B

from BP(c, B0): draw pairs (ωi, pi) ∈ Ω× [0, 1] from a Poisson process with base measure

ν(·) and let B(·) =
∑

i piδωi(·). A draw from a Poisson process with base measure ν(·)
on a subset R of the space Ω can be done by first drawing the number of atoms N ∼
Poisson

(∫
R
ν(dx)

)
and then drawing N atoms i.i.d. from the distribution which we get by

normalising ν(·) (Kingman, 1993). In the context of a Beta process, if B0(·) =
∑

i qiδωi(·)
is discrete then B(·) =

∑
i piδωi(·) with pi ∼ Beta(c(ωi)qi, c(ωi)(1 − qi)). If B0 is mixed

discrete-continuous then B is the sum of two independent contributions.

At this point we have an intuitive picture for a draw from a Beta process: it is an object

that represents a countable infinite number of atoms and each atom has a corresponding

probability of being on or off. Note that a draw from a Beta process is not a probability

distribution since it does not normalise; technically, this is called a measure. Next, we

will show how we can “draw” from a Beta process and how this relates to the IBP.

First we need to introduce the notion of a Bernoulli process: we say that X is a draw

from a Bernoulli process (we write X ∼ BeP(B)) with base measure B (over the space

Ω) when

1. If B is continuous then X is a Poisson process with intensity B.

2. If B(·) =
∑

i piδωi(·) is discrete then X(·) =
∑

i biδωi(·) where bi are independent

Bernoulli(pi) variables.

3. If B is mixed discrete-continuous then X is the sum of the two independent contri-

butions.

We can think of the Bernoulli process as a way to choose which features are on or off.

A draw X from a Bernoulli process can be thought of as a data point as it encodes the

set of all the features it possesses. One can show that the Bernoulli process and Beta

processes are conjugate: if B ∼ BP(c, B0) and Xn ∼ BeP(B) for all n ∈ {1, · · · , N} then

B|X1:N ∼ BP

(
c+ n,

c

c+ n
B0 +

1

c+ n

n∑
i=1

Xi

)
. (2.23)

We can now describe the connection between the Beta-Bernoulli process and the

IBP. Consider the Beta-Bernoulli process B ∼ BP(c, B0) and Xn ∼ BeP(B) where c

is a constant and B0 is some continuous measure with total mass B0(Ω) = α. First

we compute the marginal distribution of X1. Since X1 is a Bernoulli process it is fully

specified by its mean. One can show that E[X1] = E[E[X1|B]] = E[B] = B0. Combined
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with the fact that B0 is a continuous distribution we know that X1 is a mixture of

Poisson(α) number of atoms. This corresponds to the first customer trying a Poisson(α)

number of dishes. For all following customers we apply equation (2.23) and find that

Xn+1|X1:n ∼ BeP

(
c

c+ n
B0 +

1

c+ n

n∑
i=1

Xi

)

= BeP

(
c

c+ n
B0 +

∑
j

nj
c+ n

δωj

)
, (2.24)

where nj is the number of data points for which atom ωj is on. This means that Xn+1

is a combination of a discrete and a continuous Beta process. For the discrete part

each existing atom will be chosen with probability nj/(c + n). Hence if we set c = 1

this corresponds to the number of existing dishes a new customer tries in the IBP from

section 2.3.1. Xn+1 also gets a contribution from the continuous part where it gets

assigned a Poisson
(

α
1+n

)
number of new dishes. These predictive probabilities exactly

match the IBP predictive distribution and hence demonstrates the connection between

the IBP and the Beta process.

The Stick Breaking Construction

Our derivations for a nonparametric factor model have followed exactly the same pattern

as for the nonparametric mixture model: we first defined a stochastic process, showed

how this process is equivalent to the infinite limit of a finite model and then derived

the de Finetti mixing distribution. We concluded our discussion in section 2.1 with an

explicit stick-breaking representation for the Dirichlet Process. In this section we do the

same for the IBP. Note that although we visualised the Beta-Bernoulli process in the

previous section using sticks in the space Ω, we did not give an explicit stick breaking

construction. This is exactly what we will describe in this section.

Let us denote with π(1) > π(2) > · · · > π(M) the order statistics of the finite model

from section 2.3.1. Teh et al. (2007) showed that the order statistics π(m) follow the

distribution

p(π(m)|π(1:m−1)) = απ−α(m−1)π
α−1
(m) I(0 ≤ π(m) ≤ π(m−1)). (2.25)

By introducing a new random variable ν(m) =
π(m)

π(m−1)
and doing a change of variables, the

density of ν(m) turns out to be

p(ν(m)|ν(1:m−1)) = ανα−1
(m) I(0 ≤ ν(m) ≤ 1). (2.26)

In other words, ν(m) is independent from ν(1:m−1) and has a Beta(α, 1) distribution. From

the definition of ν(m) we know that π(m) = π(m−1)ν(m); therefore, expanding out π(m−1) we

find that π(m) =
∏m

i=1 ν(i). The construction of π(m) can be understood metaphorically
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Figure 2.14: Difference between the stick breaking construction of the DP and the IBP.

The black line denotes a stick of length 1, the blue lines denote the sticks while the red

dotted lines denote the stick remainders after breaking them. Left: the stick breaking

construction of the DP, at each step we continue breaking the remainder so that the

sum of all stick lengths equals one. Right: the stick breaking construction for the Beta

process, at each step we continue breaking the last stick length so that the sticks are

monotonically decreasing but do not sum up to one.

as follows: we start with a stick of length 1 and at each iteration we break off a piece

ν(m) ∼ Beta(α, 1) relative to the current length of the stick. We assign the new length to

π(m) and iterate on the stick of length π(m).

Recall for the stick breaking construction for the DP we start with a stick of length

one, then draw βi ∼ Beta(1, α) and break off the current stick at relative position βi, we

let πi be the part we just broke off and iterate on the remaining part. This is equivalent

to drawing β̂i ∼ Beta(α, 1), breaking the stick off at relative position β̂i, assigning the

remainder to πi and iterating on the part we broke off. Now the two constructions are

almost identical: the only difference is that in the IBP stick breaking construction we

iterate on the piece we broke off while in the DP we iterate on the remainder. Figure 2.14

illustrates this difference.

2.3.2 Inference

When the IBP was originally introduced, Griffiths and Ghahramani (2006) described a

Gibbs sampler for inference; this sampler is particularly convenient for conjugate models.

Teh et al. (2007) introduce the stick breaking construction for the IBP. Building on the

stick breaking construction they describe two different slice samplers; both not exploiting

any conjugacy in the model. Empirical evaluation shows that despite not exploiting

conjugacy, the slice sampler has similar performance to the collapsed Gibbs sampler

in terms of mixing time. Doshi-Velez and Van Gael (2008) experimented with split-

merge MH proposals (Jain and Neal, 2004, Dahl, 2003) for the IBP. Doshi-Velez (2009)

introduces a Gibbs sampler for conjugate models which empirically has been found to offer

two orders of magnitude faster inference without loss of predictive performance. Wood

and Griffiths (2007) describe a particle filter for the IBP and show that it can achieve

less error with less computation time. We are aware of only our own work in Doshi-Velez

et al. (2009) for deterministic variational inference algorithm for the IBP.
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2.3.3 Discussion

The IBP is commonly used in settings where a number of latent features is to be dis-

covered. Griffiths and Ghahramani (2006) use the IBP to learn latent representation of

visual images. Titsias (2007) introduces a very similar nonparametric Bayesian factor

model based on the conjugacy of the Gamma and Poisson distributions rather than the

Beta and Bernoulli conjugacy for the IBP. Wood et al. (2006) develop a prior on top

of the IBP to learn an unknown number of hidden causes in a medical setting. Görür

et al. (2006) build a nonparametric choice model using the IBP as a prior distribution.

Thibaux and Jordan (2007) uses the Beta process and a hierarchical extension of it for

improving document classification over Naive Bayes. Wood and Griffiths (2007), Meeds

et al. (2007) use the IBP as a prior for binary matrix factorisation where the number of

latent factors is unknown. Doshi-Velez and Van Gael (2008) use the IBP for discovering

software bugs from trace data where the number of bugs is unknown.

All the models above rely on the properties of the IBP described above: the rows and

columns of the IBP matrix are exchangeable. An interesting exception to this distribution

is the phylogenetic IBP in Miller et al. (2008a): this model assumes a tree structure on

the data points, breaking exchangeability and introducing correlation which is dependent

on the distance between data points in the tree. In chapter 5 we construct a different

model that breaks exchangeability by assuming data points are related through a Markov

process rather than a tree structure.

2.4 Discussion

This concludes our background chapter on nonparametric building blocks. In the next

chapters we will extend the infinite capacity mixture model and factor model to the time

domain and explicitly describe inference procedures for these nonparametric time series

models.
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Chapter 3

The Infinite Hidden Markov Model

In this chapter we describe a Bayesian nonparametric HMM on top of the nonparametric

distributions from the previous chapter. The Bayesian nonparametric Hidden Markov

Model was introduced in Beal et al. (2002) and subsequently called the infinite hidden

Markov model or iHMM. In this incarnation, the iHMM uses a hierarchy of Polya urn

models to represent a generative model which extends the HMM by allowing for an

arbitrary large state space. Any finite state sequence s1:T generated by it only visits a

finite subset of all states. Beal et al. (2002) showed that the iHMM could be trained using

an exact Gibbs sampler with a per iteration complexity of O(K2T 2) or an approximate

Gibbs sampler with a per iteration complexity of O(K2T ). In section 3.1.1 we review

this construction of the iHMM.

Teh et al. (2006b) re-interpreted the hierarchical Polya urn model in Beal et al. (2002)

as a hierarchical Dirichlet process. For this reason, some authors also use the name

HDP-HMM for the infinite HMM model. This interpretation embeds the iHMM into the

Dirichlet process formalism, leading to a deeper theoretical understanding. The HDP

interpretation gives the iHMM new measure theoretic, Chinese Restaurant Franchise and

stick breaking representations. Moreover, these new representations lead to an alterna-

tive exact Gibbs sampler with a per iteration complexity of O(K2T ). We review this

construction of the iHMM in section 3.1.2.

Although there has been some confusion in the literature as to whether the iHMM

and HDP-HMM represent the same model, in section 3.1.3 we formally prove that they

do. In section 3.2 we describe fast inference algorithms for the iHMM including two based

on dynamic programming based on the work in Van Gael et al. (2008a). We discuss how

the iHMM relates to other techniques for automatically learning the number of states in

an HMM in section 3.3. Finally, we conclude the chapter with an overview of a number of

extensions to the iHMM. This chapter is based on Van Gael et al. (2008a) and previously

unpublished results.

61



3.1 The Infinite Hidden Markov Model

We start our description of the iHMM by introducing the hierarchical Polya urn scheme

construction of the iHMM as it was presented in Beal et al. (2002). This scheme makes

clear the generative procedure for the hidden representation s1:T and allows us to better

understand the effect of the hyper parameters. Section 3.1.2 introduces the HDP-based

description of the iHMM. This interpretation will turn out to be useful when designing

inference methods for the iHMM.

3.1.1 A Hierarchical Polya Urn Scheme

In section 2.1.1 we reviewed the Polya urn scheme and described how it can generate a

clustering of data with an arbitrary large number of clusters. Following Beal et al. (2002),

we describe how to extend the Polya urn scheme to use in a time series setting. Consider

a countably infinite number of Polya urns with parameter α, one for each possible state

the iHMM can be in. We refer to this set as the set of transition urns. In addition to

having coloured balls, we also colour the urns and identify both the colours of the urns

and balls with states. We draw balls from the hierarchical Polya urn and keep track of

their colours: st refers to the color of the t’th ball drawn from the hierarchical Polya urn.

For bookkeeping purposes, we also keep track of the quantity nij: the number of balls of

colour j in the transition urn with colour i.

Initially, all urns are empty and we assume we observe a dummy ball with arbitrary

colour s0. At each time step t, we record the colour st−1 of the previously drawn ball and

then draw according to the Polya urn scheme from the urn with colour st−1. We set st to

the colour of the extra ball which we added to urn st−1. We interpret the number of balls

with colour j in the urn with colour i as being proportional to the transition probability

of a Markov chain

p(st = j|st−1 = i, α) =
nij∑

j′ nij′ + α
. (3.1)

Note that these probabilities do not sum to one: under the Polya urn scheme there

is a probability α∑
j′ nij′+α

of drawing a ball outside of the transition urns. To determine

the colour of the new ball we introduce an extra oracle Polya urn with parameter γ. We

denote with ci the number of balls in the oracle urn with colour i. When we draw a ball

from the oracle urn, we record its colour st, replace the ball with two balls of the same

colour back into the oracle urn and one ball with the same colour to the transition urn

with colour st−1. Formally, when we draw a ball with colour j from the oracle urn we

set cj ← cj + 1 and nst−1,j ← nst−1,j + 1. Conditional on drawing from the oracle, the
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Figure 3.1: Hierarchical Polya Urn Example: we initialise (t = 0) our hierarchical Polya

urn with both the transition and oracle urns empty and assume our first dummy state

carries the color blue. In the first step we check the blue urn and find that there are

no balls. This means that with probability α/α = 1 we query the oracle. In the oracle

urn, the probabilities of drawing a blue ball is γ/γ = 1 so we put a blue ball in both

the blue urn and the oracle urn. Next, we generate the state for time step 2: now,

with probability 1/(1 + α) we draw a blue ball and with probability α/(1 + α) we query

the oracle urn. Imagine we query the oracle then with probability 1/(1 + γ) we draw a

blue ball and with probability γ/(1 + γ) a new (red) ball. In our example we draw a

blue ball implying that we add an extra blue ball to the oracle and blue transition urns.

For time step 3, our example shows that the oracle urn was queried (with probability

α/(2 + α)) and that in the oracle a new red ball was drawn which was added to the

blue transition urn as well as to the oracle urn. This means that in time step 4 we first

query the red urn and since there are no balls in it, with probability 1 we query the

oracle urn; this time returning a blue ball moving us back to the blue urn. Finally in

step 5, a red ball is drawn from the blue transition urn without querying the oracle.

The resulting sequence of colours blue,blue,red,blue,red corresponds to the state sequence

s1 = 1, s2 = 1, s3 = 2, s4 = 1, s5 = 2.

63



transition probability is

p(st = j|st−1 = i, γ) =


cj∑

j′ cj′+γ
if j represents an existing colour,

γ∑
j′ cj′+γ

if j represents a new colour.
(3.2)

In other words, when we query the oracle, with probability proportional to γ we introduce

an entirely new colour, otherwise we re-use an existing colour. Re-using existing colours

is key to enable the Markov chain to move back to existing states. The combination of

transition and oracle urns explains why this scheme is called the hierarchical Polya urn1

scheme: we stack the transition urn and oracle urns on top of each other in a decision

hierarchy illustrated in figure 3.2. To conclude the hierarchical Polya urn algorithm, we

interpret the st as the states of a Markov chain. It is clear that the number of possible

states is a random quantity and can grow arbitrarily large. Figure 3.1 illustrates a draw

from the hierarchical Polya urn scheme.

nij

j0 nij0+®
®

j0 nij0+®

Transition to State j Query Oracle

cj

j0 cj0+°

°

i0 ci0+°

Transition to State j
Transition to 

New State

...

...

Figure 3.2: Hierarchical Polya urn transition scheme as a decision tree.

The hyper parameters γ and α play an important role in determining the number of

states in an iHMM; this is illustrated in figure 3.3. The hyper parameter γ controls how

frequently we are going to add a ball with a completely new colour to the urns, in other

words, the probability of visiting a new state. The top and bottom plots in figure 3.3

show what happens when we change from γ = 20 to γ = 2: the number of states grows

much more slowly in the bottom plot than in the top plot. The hyper parameter α on

the other hand controls how frequently we query the oracle. The top and middle plots

in figure 3.3 illustrate the difference between α = 20 and α = 2. We see that in the

middle plot, once a particular transition accumulates a lot of counts it becomes more

1In Beal et al. (2002) this was originally called a hierarchical Dirichlet process but that term has

subsequently been used by Teh et al. (2006b) to refer to the closely related Dirichlet process with base

measure drawn from another Dirichlet process.
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and more likely that we take that transition again. For example, the 4 → 3 and 3 → 4

transitions are taken frequently. In the limit of α→∞, we always query the oracle and

the distribution of ball colours for each transition urn is going to be very close to the

distribution implied by the oracle urn. In this limiting case, we can think of the oracle

urn as specifying the expected number of times we visit each state which is the stationary

distribution of the Markov chain.

Figure 3.3: Sample Markov chain paths generated by the iHMM. The plots show the state

sequence for an iHMM with parameters γ = 20, α = 20 (top); γ = 20, α = 2 (middle);

γ = 2, α = 20 (bottom).

Completing the iHMM The hierarchical Polya urn scheme defines a nonparametric

distribution on the hidden state sequence s1:T . In order to complete it to a full hidden

Markov model we need to introduce a mechanism to generate observations conditional

on the state sequence s1:T . For that we introduce

• a base distribution H from which we draw the output likelihood parameters θk for

each state k ∈ {1, · · · ,∞},

• a likelihood model F which takes a state st and its parameter θst and generates a

data point yt.

The iHMM presented in Beal et al. (2002) included an additional parameter controlling

the rate of self transitions. This idea was revisited by Fox et al. (2008b) as the sticky

HDP-HMM and further generalised in Stepleton et al. (2009). We will review these

models in section 3.4.3.
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3.1.2 The Hierarchical Dirichlet Process

The Polya urn scheme is an intuitive procedure for generating state sequences with arbi-

trarily large state space. Given the similarities between the Polya urn and the Dirichlet

process we might expect that alternative formulations of the iHMM in terms of Dirichlet

processes and stick breaking constructions exist. In this section, we review the interpre-

tation of the iHMM using the hierarchical Dirichlet process framework first introduced

by Teh et al. (2006b). As we will see in section 3.2, using this representation we will be

able to more easily design inference schemes for the iHMM.

One way to look at the distribution defined by an HMM with K states is to write

down the marginal distribution of the observation yt given the previous latent state st−1

p(yt|st−1) =
∑
st

p(st|st−1)p(yt|st) =
∑
st

πst−1,stF (yt; θst). (3.3)

This equation, illustrated in figure 3.4, shows how we can think of the HMM as a dynamic

mixture model: our state at time t − 1 defines a mixture over K emission distributions

F (yt; θ1), · · · , F (yt; θK) with mixing weights πst−1,1, · · · , πst−1,K .

st¡1st¡1 stst

ytyt

Figure 3.4: The HMM can be thought of as a dynamic mixture model if we look at the

marginal distribution of the observation at time t based on the state at time t−1. Left: a

slice from the HMM corresponding to equation (3.3). Right: the mixture at time t when

the output model F is a one dimensional Gaussian distribution.

Building on this insight, we now explore how we can formalise the idea to let K →∞
to find an infinite state space version of the HMM. The core idea is the following: we

introduce the Dirichlet process from section 2.1 to turn the finite dynamic mixture into

an infinite mixture. Recall the stick-breaking construction of the DP

G(·) =
∞∑
k′=1

βk′δθk′ (·) (3.4)

and note how similar it is to the finite mixture in equation (3.3). If we identify row st−1

from the transition matrix π in equation (3.3) with the stick β in equation (3.4), and the

emission parameter θst in equation (3.3) with the atom θk′ in equation (3.4), then modulo
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the emission model F , we can state that G(·) is a infinite capacity version of the finite

mixture in equation (3.3).

This similarity applies to one state of the Markov chain. Next, we introduce an

infinite number of DP’s, one to represent each row of the transition matrix π. Formally,

we let Gk(·) =
∑∞

k′=1 βk,k′δθk,k′ (·) represent the mixture for row k. This introduces a new

technical problem though: if we let each Gk(·) be a draw from a DP then almost surely

(section 2.2) all atoms θk,k′ will be different when the base measure is continuous! This

is worrisome as equation 3.3 specifies that the emission parameter is only dependent on

state st and shouldn’t depend on state st−1. In other words, st−1 only influences the

mixture weights, not the mixture parameters. Hence, in designing the iHMM, we need

to ensure that all Gk(·) share the same atoms: this is exactly what the HDP can do!

Formally, the model

G0 ∼ DP(γ,H),

Gj ∼ DP(α,G0), ∀j ∈ {1 · · ·∞},

in the stick-breaking representation will have the form

G0(·) =
∞∑
k=1

βkδθk(·), (3.5)

Gj(·) =
∞∑
k=1

πjkδθk(·), ∀j ∈ {1 · · ·∞}. (3.6)

This is exactly the form we want for an infinite dynamic mixture. Working in the stick-

breaking representation allows us to add the hidden Markov chain and observation model:

figure 3.5 shows the full model for the iHMM.

∀j ∈ {1 · · ·∞}
∀t ∈ {1 · · ·T}

β ∼ Stick(γ)

πj· ∼ DP(α, β)

θj ∼ H

s0 = 1

st ∼ πst−1,·

yt ∼ F (yt|θst)
k = 1 ¢ ¢ ¢1

s0s0 s1s1 s2s2

y1y1 y2y2

¼k¼k

µkµk

¯̄°°

®®

HH

Figure 3.5: The graphical model for the iHMM

First, note that figure 3.5 uses the notation πj· ∼ DP(α, β) to mean that πj· is the stick

corresponding to Gj(·) in equation (3.6). Next, observe the striking similarity between the
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graphical model for the Bayesian HMM in figure 1.6 and figure 3.5: the only difference

between the two models is the introduction of the variable β for the iHMM. This is

necessary as the naive limit K → ∞ for the Bayesian HMM would lead to an unusable

transition matrix: a draw from a Dirichlet
(
α
K
, · · · , α

K

)
distribution will become sparser

with increasing K; in the limit K →∞, there will be one uniformly chosen random entry

with probability mass 1 and all other entries will have mass 0. Hence an infinitely large

transition matrix whose rows are of this form will have one unique state per observation.

3.1.3 Hierarchical Polya Urns are Equivalent to Hierarchical Dirichlet

Processes

Although it is not immediately obvious, the hierarchical Polya urn construction of the

iHMM (Beal et al., 2002) and its HDP interpretation (Teh et al., 2006b) define the same

distribution over the Markov chain s1:T . In this section we formalise the proof of their

equivalence. We will refer to the distribution over s1:T defined by the hierarchical Polya

urn scheme as purn(s1:T ) and the distribution defined by the hierarchical Dirichlet process

as phdp(s1:T ).

Figure 3.6: CRF visualisation of the HDP underlying the iHMM. The dark grey circles

represent the tables in the CRP for the base DP G0 while the light gray circles represent

the tables in the CRP for the child DP’s Gj. Each red circle represents a customer sitting

at a table in the child CRP’s. Each dotted line corresponds to a draw from the base

CRP.

In section 2.2 we introduced the Chinese Restaurant Franchise representation of the

HDP. From the previous section we know that the iHMM is a special case of the HDP.

Since our equivalence proof relies on the Chinese Restaurant Franchise representation of
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the HDP, we review how it applies in the context of the iHMM. Figure 3.6 visualises this

Chinese restaurant franchise for the iHMM HDP construction. Each transition in the

iHMM corresponds to a customer sitting at some table in a child CRP Gj. What makes

the CRP representation of the iHMM confusing is that when customer t decides to sit

at a new table in a child CRP that doesn’t mean that transition t enters a new state.

The correct interpretation of equation (3.6) says that when customer t decides to sit at

a new table, the child CRP draws the parameter for that new table from the base CRP.

Two things can happen: either that parameter is a previously represented parameter

in which case transition t goes to a previously represented state; or, the parameter is

a completely new parameter in which case transition t moves to a new state. In other

words, multiple tables in the child CRP’s can represent transitions to the same state.

In figure 2.2 the first child CRP has two tables representing the self transition. We will

denote the number of customers at the l’th table serving dish j in restaurant i as mijl.

The number of customers sitting at the table serving dish l in the base restaurant will be

denoted bl.

To summarise, we keep track of two different sets of statistics in the equivalence proof:

• for the Polya urn we keep track of the numbers nij specifying the number of balls

in transition urn i of colour j and the number ci specifying the number of balls of

colour i in the oracle urn.

• for the hierarchical Dirichlet process we keep track of the number of customers in

the CRF representation (Teh et al., 2006b): mijl is the number of customers sitting

in restaurant i at the l’th table that serves dish j and bl is the number of customers

sitting at the table serving dish l in the base restaurant (or in other words: the

number of tables serving dish l in all restaurants together).

Theorem. The distribution over the sequence of states s1:T defined by the hierarchical

Polya urn scheme, purn(s1:T ) is the same as the distribution defined by the hierarchical

Dirichlet process phdp(s1:T ).

Proof Idea. The core idea of the inductive proof is that the CRF representation keeps

track of a bit more information than the Polya urn: in the CRF, mijl keeps track of who

sits at which table serving a particular dish, while in the Polya urn nij only keeps track

of the total number of people who are sitting at a table serving dish j. Since the exact

configuration doesn’t matter for the predictive probability p(st|s1:t−1), the two schemes

define the same distribution over the sequence s1:T . We formalise this idea in the proof

below.
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Proof. The proof follows an inductive argument. For the base case of the induction we

note that purn(s1) = phdp(s1) = 1 because initially there are no customers in the CRF

nor are there balls in the Polya urn and hence we can always initialise the first state to

be the state with identifier 1. After this assignment, note that we called the oracle once.

Hence c1 = 1 and we have set n11 = 1, analogously, m111 = 1 since there is one person

sitting in the whole CRF and he must be in restaurant 1 eating dish 1 and b1 = 1 since

there is only one table serving dish 1 in the whole CRF.

Next we describe the inductive argument: after generating state st−1, we assume

bi = ci for all i and for any configuration mijl : nij =
∑

lmijl. Note that we don’t assume

a particular configuration for mijl but any configuration that satisfies nij =
∑

lmijl.

We now prove that purn(st|s1:t−1) = phdp(st|s1:t−1). If we are in state st−1, under the

Polya urn scheme there are two possibilities: either we query the oracle or we don’t. We

query the oracle with probability α∑
j nst−1,j

+α
and if we do so, we either go to state i

with probability ci∑
k ck+γ

or to a new state with probability γ∑
k ck+γ

. Under the HDP, the

probability that we choose to sit at a new table in restaurant st−1 is α∑
jlmst−1,j,l

+α
. If we

do choose to sit at a new table, we choose an existing dish i with probability bi∑
k bk+γ

and

a new dish with probability γ∑
k bk+γ

. Since choosing a dish in the HDP representation

corresponds to transition to a particular state in the iHMM, we can see that under the

induction hypothesis conditioned on the fact that we query the oracle (or sit at a new

table) the probabilities are exactly the same. Similarly, if under the Polya urn scheme,

we decide not to query the oracle, we transition to state i with probability
nst−1,i∑
j nst−1,j

+α
.

Under the CRF, we will sit at a table serving dish i with probability
∑
lmst−1,i,l∑

jlmst−1,j,l
+α

. Under

the induction hypothesis, these two probabilities are again the same. QED.

3.2 Inference

When the iHMM was introduced in Beal et al. (2002) it was presented with two differ-

ent inference algorithms: a Gibbs sampler with a time complexity of O(K2T 2) and an

approximate Gibbs sampler with a time complexity of O(K2T ). The re-interpretation

of the iHMM in the HDP framework by Teh et al. (2006b) modified the approximate

Gibbs sampler from Beal et al. (2002) and made it exact, whilst retaining the O(K2T )

complexity. We describe this linear time inference scheme in section 3.2.1.

The linear time Gibbs sampler updates the hidden state at each time step condi-

tioned on all other states in the Markov chain. Typically, the state sequence variables

in a Markov chain are strongly correlated. As is well known, Gibbs sampling tends to

mix slowly when there are strong correlations between variables. Unfortunately, strong

connections are common when modelling sequential data: e.g. when we know a stock’s

price today we have a good guess about the stock’s price tomorrow.
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Scott (2002) investigates a Markov chain Monte Carlo method for the Bayesian treat-

ment of the HMM that works around the correlation problem by sampling the whole

hidden state sequence at once. We will refer to this dynamic programming based algo-

rithm as the forward-filtering backward-sampling (FF-BS) algorithm. A short summary

of the algorithm for finite HMM’s can be found in appendix B.

Because the iHMM has a potentially infinite number of states, we cannot naively

apply the FF-BS algorithm. In section 3.2.2 we describe the beam sampler introduced

in Van Gael et al. (2008a). The beam sampler is an auxiliary variable MCMC algorithm

which adaptively truncates the iHMM so we can run a variant of the FF-BS algorithm.

It re-samples the whole Markov chain at once and suffers less from slow mixing than the

Gibbs sampling.

The adaptive truncation of the transition matrix in the beam sampler makes it hard

to make exact statements about its complexity; each iteration of the beam sampler might

involve a different truncation and hence a different run time. In section 3.2.3 we introduce

the embedded HMM sampler for the iHMM. This dynamic programming-based method

embeds a finite HMM into the infinite state space of the iHMM to perform inference.

As we will prove, this adaptive embedding still allows for exact posterior inference but

guarantees a fixed run time cost per iteration.

We conclude the inference section with a brief overview of hyper-parameter learning

for the iHMM.

3.2.1 The Collapsed Gibbs Sampler

When we inspect the graphical model in figure 3.5 we see that the unobserved random

variables corresponding to the rows of the transition matrix πk have observed descendants

in the graphical model: the observations y1:T . Following the standard rules for graphical

models we conclude that the πk are conditionally dependent given y1:T . If we observe β

and s1:T however, the rows of the transition matrix become conditionally independent.

We can consider each transition as a draw from a Polya urn scheme and use our knowledge

of Polya urns to re-sample the state sequence. Moreover, if the output distribution F

is conjugate to the HDP base distribution H we will show how we can also analytically

integrate out the likelihoods involved. One iteration of the collapsed Gibbs sampler will

consist of two steps: re-sampling the states p(s1:T |y1:T , α, β, γ,H, F ) and re-sampling the

base distribution parameters p(β|y1:T , s1:T , α, γ,H, F ).

Sampling st If we condition on β and s1:T , the DP’s for each of the transitions become

independent. Hence, for all k ∈ {1, 2, · · · } we can treat all the transitions out of state k

as draws from a Polya urn. Since they form an exchangeable sequence we can re-sample

s1:T by taking out one st at a time (essentially removing two transitions) and re-sampling
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it from the posterior

p(st|y1:T , s−t, α, β, γ,H, F ) ∝ p(yt|st, s−t, y−t, H, F )p(st|s−t, α, β, γ), (3.7)

where s−t denotes all states except st. The first factor is the conditional likelihood of yt

given s1:T , y−t and H

p(yt|st, s−t, y−t, H, F ) =

∫
p(yt|θst)p(θ|s−t, y−t, H)dθ, (3.8)

where y−t denotes all observations except yt. If the output likelihood F is conjugate to

the HDP base distribution H, this quantity can generally be analytically computed.

In order to compute the factor p(st|s−t, α, β, γ), we first use the property that condi-

tional on β the Polya urns for each row are independent. This means that the transition

in and the transition out of st can be considered draws from a Markov exchangeable

sequence (that is, the in-transition is a draw from the exchangeable sequence out of urn

st−1 and the out-transition is a draw from the exchangeable sequence out of urn st). If we

denote with n−tij the number of transitions from state i to state j excluding the transitions

involving time step t, similarly let n−t·i , n
−t
i· be the number of transitions in and out of

state i excluding time step t and K be the number of distinct states in s−t, then we can

write

p(st = k|s−t, α, β, γ) ∝



(n−tst−1,k
+ αβk)

n−tk,st+1
+αβst+1

n−tk· +α
if k ≤ K, k 6= st−1

(n−tst−1,k
+ αβk)

n−tk,st+1
+1+αβst+1

n−tk· +1+α
if k = st−1 = st+1

(n−tst−1,k
+ αβk)

n−tk,st+1
+αβst+1

n−tk· +1+α
if k = st−1 6= st+1

αβkβst+1 if k = K + 1.

(3.9)

We re-sample the whole state sequence s1:T by re-sampling each st in turn conditional on

all other states.

Sampling β Recall that β is the distribution on the atoms for the base distribution

of the HDP. If we would have kept track of the Polya urn representation of the base

distribution (that is, the counts of each ball colour ci in the oracle urn) then we could

re-sample from the posterior β ∼ Dirichlet(c1, c2, · · · , cK , γ). Although we don’t have

the representation c1:K we can introduce an auxiliary variable mij with the following

interpretation: mij denotes the number of oracle calls that returned a ball with colour

j when we queried the oracle from state i. The total number of colour j balls in the

oracle urn equal
∑

imij: hence, if we can sample mij then we have implicitly sampled

cj =
∑

imij and hence we can re-sample β.

First note that if the number of transitions from state i to j is nonzero (nij > 0)

then we know that we must have queried the oracle at least once when we were in state i.
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Moreover, we also know thatmij ≤ nij since we can query the oracle at most once for every

transition. Let Sij denote the set of transitions from i to j, Sij = {sk|sk = i ∧ sk+1 = j}.
The exchangeability of the transitions out of state i implies that the sequence Sij is

exchangeable as well. Note that mij is the number of elements in Sij that were gotten

from querying the oracle. Because Sij is an exchangeable sequence, for each sk ∈ Sij we

can write down the conditional distribution

p(sk+1 = j|S−sk+1

ij ) ∝

{
n
−sk+1

ij − 1 if we don’t query the oracle,

αβj if we query the oracle.
(3.10)

These equations form the conditional distribution of a Gibbs sampler whose equilibrium

distribution is the distribution of a Polya urn scheme with parameter αβj. In other words,

in order to sample mij, we sample nij elements from a Polya urn with parameter αβj and

count the total number of newly chosen ball colours2.

Complexity We can break down the computational complexity for an iteration where

the sample uses at most K states in two different parts. When sampling the hidden

state sequence, for each time step 1 ≤ t ≤ T we need to compute O(K) probabilities;

this results in a O(TK) contribution to the computational cost. On the other hand,

when sampling the β variables, for each of the K2 entries of the transition matrix, we

need to sample nij random variables. Since
∑

ij nij = T this leads to an extra O(K2 +T )

complexity. In summary, one iteration of the collapsed Gibbs sampler has an O(TK+K2)

computational complexity. This is the same computational complexity as the Gibbs

sampler for the finite HMM with K states; note that for the iHMM K can vary between

iterations though.

Discussion First, note that non-conjugate models can be handled using the sampling

methods in Neal (2000). An example can be found in Van Gael et al. (2008a) who

experimented with a collapsed Gibbs sampler with normal base distribution and Student-t

distributed likelihood for a change point detection problem.

As we discussed above, the collapsed Gibbs sampler suffers from one major limitation:

sequential data are likely to be strongly correlated. In other words, it is unlikely that the

Gibbs sampler which makes individual updates to st can cause large blocks within s1:T

to change state. Scott (2002) showed how dynamic programming based methods which

compute and sample from the full joint distribution over s1:T for finite HMM’s do not

suffer from this slow mixing. However, naively applying dynamic programming to the

iHMM is impossible due to its infinite state space. In what follows we describe a number

of proposals to make dynamic programming work for the iHMM.

2Thanks to Emily Fox for bringing this to our attention; a previous implementation computed Stirling

numbers of the second kind which are rather expensive to compute for large scale applications.
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3.2.2 The Beam Sampler

We can improve on the collapsed Gibbs sampler by introducing a method that re-samples

the whole state sequence of the iHMM at once. Methods that achieve this for finite

HMM’s, e.g. the forward-filtering backward-sampling algorithm reviewed in appendix B,

efficiently enumerate all possible state trajectories (using dynamic programming), com-

pute their corresponding probabilities and sample from this set. Unfortunately, the

forward-filtering backward-sampling algorithm does not apply to the iHMM because the

number of states, and hence the number of potential state trajectories, is infinite.

The core idea of the beam sampling in Van Gael et al. (2008a) is to introduce auxiliary

variables u1:T such that conditioned on u1:T the number of trajectories with positive

probability is finite. Then, dynamic programming can be used to compute the conditional

probabilities of each of these trajectories and efficiently sample whole state trajectories.

These auxiliary variables do not change the marginal distribution over other variables and

hence MCMC sampling still converges to the true posterior. The idea of using auxiliary

variables to limit computational cost is inspired by Walker (2007) who applied it to limit

the number of components in a DP mixture model that need to be considered during

sampling.

Algorithm 3 The beam sampler for the iHMM.

Initialise s, β randomly.

loop

Sample the transition matrix parameters π|s1:T , β

Sample the auxilary variables u1:T |s1:T , π

Sample the emission parameters θ|s1:T , y1:T , H

Sample the state sequence s1:T |u1:T , π, y1:T , θ, β

Sample the base DP β|s1:T , α, γ

end loop

Sampling π and θ Since the auxiliary variable and dynamic program below need the

transition and likelihood model parameters, we can think of them as another set auxiliary

of variables which we sample just prior to sampling u1:T . Let nij be the number of

times state i transitions to state j in the state sequence s1:T , where i, j ∈ {1 . . . K}, K
is the number of distinct states in s1:T , and these states have been re-labeled 1 . . . K.

Merging the infinitely many states not represented in s1:T into one state, the conditional

distribution of (πk1 . . . πkK ,
∑∞

k′=K+1 πkk′) given its Markov blanket s1:T , β, α is

Dirichlet(nk1 + αβ1 . . . nkK + αβK , α
∑∞

i=K+1 βi).
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Each θk is independent of others conditional on s1:T , y1:T and their prior distribution

H, i.e. p(θ|s1:T , y1:T , H) =
∏

k p(θk|s1:T , y1:T , H). When the base distribution H is conju-

gate to the data distribution F , each θk can generally be sampled efficiently. Otherwise

Metropolis-Hastings or other approaches may be applied. Note that for beam sampling

in the non-conjugate case this is simpler than for Gibbs sampling: we only need to sample

from a non-conjugate posterior rather than use Monte Carlo integration to compute the

integral in equation (3.8).

Sampling u1:T For each time step t we introduce an auxiliary variable ut with condi-

tional distribution ut ∼ Uniform(0, πst−1st). This very simple step lies at the core of the

beam sampling idea. By first sampling auxiliary variables uniformly between 0 and the

state transition probability πst−1st , when we later sample the state sequence s· conditional

on the u·, it must be the case that 0 ≤ ut ≤ πst−1st for all st. There are only a finite set of

state transitions for which this property can hold as we will show in the paragraph below.

This essentially reduces the infinite dimensional state space to a finite dimensional one.

Sampling s1:T The key observation is the distribution over state sequences s1:T condi-

tional on the auxiliary variables u1:T will only have non-zero probability where πst−1st ≥
ut. Other paths are not consistent with the conditional distribution p(ut|s1:T , π). More-

over, there are only finitely many such trajectories with this property: since πkk′ > 0

with probability 1, ut > 0 with probability 1; given the auxiliary variable ut, note further

that for each possible value of st−1, ut partitions the set of transition probabilities out of

state st−1 into two sets: a finite set with πst−1k > ut and an infinite set with πst−1k < ut.

Thus we can recursively show that for t = 1, 2 . . . T the set of trajectories s1:t with all

πst′−1st′
> ut is finite. The math below makes this more clear and will also show how

dynamic programming can compute the conditional distribution over all such trajectories.

First note that the probability density for ut is

p(ut|st−1, st, π) =
I(0 < ut < πst−1,st)

πst−1,st

, (3.11)

where I(C) = 1 if condition C is true and 0 otherwise. We compute p(st|y1:t, u1:t) for all
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time steps t as follows (we omit the additional conditioning variables π and θ for clarity):

p(st|y1:t, u1:t)

∝ p(st, ut, yt|y1:t−1, u1:t−1),

=
∑
st−1

p(yt|st)p(ut|st, st−1)p(st|st−1)p(st−1|y1:t−1, u1:t−1),

= p(yt|st)
∑
st−1

I(ut < πst−1,st)p(st−1|y1:t−1, u1:t−1),

= p(yt|st)
∑

st−1:ut<πst−1,st

p(st−1|y1:t−1, u1:t−1). (3.12)

Note that we only need to compute (3.12) for the finitely many st values belonging to

some trajectory with positive probability. Furthermore, although the sum over st−1 is

technically a sum over an infinite number of terms, the auxiliary variable ut truncates

this summation to the finitely many st−1’s that satisfy both constraints πst−1,st > ut and

p(st−1|y1:t−1, u1:t−1) > 0. Finally, to sample the whole trajectory s1:T , we sample sT from

p(sT |y1:T , u1:T ) and perform a backward pass where we sample st given the sample for

st+1: p(st|st+1, y1:T , u1:T ) ∝ p(st|y1:t, u1:t)p(st+1|st, ut+1).

Sampling β We discard the transition matrix π and sample β using the same algorithm

as the Gibbs sampler in section 3.2.1.

Complexity For each time step and each state assignment we need to sum over all

represented previous states. If K states are represented, the worst case complexity is

O(TK2). However, the sum in (3.12) is only over previous states for which the transition

probability is larger than ut. In practice this means that we might only need to sum over

many fewer states.

Figure 3.7 shows the empirical complexity of the beam sampler on the application

which we introduce in chapter 4. As we can see from the plot, initially the beam sampler

considers about K2/2 transitions per state but very quickly this number decreases to

about 10% of K2. This means that the beam sampler will run approximately 10 times

faster than the dynamic program which considers all transitions. This increase doesn’t

come for free: by considering fewer potential transitions, the chain might mix more slowly.

Qualitative Comparison Qualitatively, the beam sampler typically outperforms the

Gibbs sampler. Although it is quite hard to compute the mixing time of a complex Mote

Carlo method; in this section we evaluate the beam sampler on two artificial and two

real datasets to illustrate the following properties: (1) the beam sampler mixes in much

fewer iterations than the Gibbs sampler; (2) the beam sampler mixes well regardless of
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Figure 3.7: This plot shows an example of how efficient the beam sampler is in practice.

On the x-axis we plot the iteration; on the y-axis we plot the fraction of the worst case

complexity per state. Recall that if the sampler currently represents K states, the worst

case complexity for a particular state will be K2.

strong correlations in the data and (3) the beam sampler is more robust with respect to

varying initialization and prior distribution.

Our first experiment compares the performance of the iHMM on a sequence of length

800 generated by a 4 state HMM. The hidden state sequence was almost cyclic (1-2-3-4-

1-2-3-. . . ) with a 1% probability of self transition: i.o.w the true distribution of hidden

states is strong negatively correlated. We use a multinomial output distribution with the

following emission matrix 
0.0 0.5 0.5

0.6666 0.1666 0.1666

0.5 0.0 0.5

0.3333 0.3333 0.3333

 .
Next we run the Gibbs and beam sampler 20 times from a random initialization with

every state randomly chosen between 1 and 20. We test the performance of both samplers

using three different hyperparameter settings: (1) vague gamma hyperpriors for α and γ

(Gamma(1, 1) and Gamma(2, 1) respectively); (2) strong gamma hyperpriors for α and γ

(Gamma(6, 15) and Gamma(16, 4) respectively); (3) fixed hyperparameters α = 0.4, γ =

3.8. The latter were chosen using the values the beam and Gibbs samplers converged to.

At every iteration, we greedily compute an assignment of sample states to true states to

maximize overlap and use the resulting Hamming distance as our error measure. The top

plot in figure 3.8 clearly shows that the beam sampler discovers the underlying structure
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Figure 3.8: iHMM performance on strong negatively correlated data. The top plot shows

the error of the Gibbs and beam sampler for the first 1500 iterations averaged over

20 runs. The bottom plot shows the average number of previous states considered in

equation (3.12) for the first 100 iterations of the beam sampler.

much faster than the Gibbs sampler. Also, the beam sampler is insensitive to the prior

while the performance of the Gibbs sampler becomes worse as we strengthen our prior

beliefs. The bottom plot of figure 3.8 shows how many states are summed over in the

dynamic program of the beam sampler averaged per timestep, per state. This reinforces

our complexity discussion from the previous paragraph: we find that after only about 20

iterations, the beam sampler on average considers a little more than one state suggesting

that the actual complexity of the beam sampler is closer to O(TK) rather than the worst

case complexity of O(TK2).

Our second experiment illustrates the performance of the beam sampler on data gen-

erated from HMM’s with increasing positive correlation between the hidden states. We

generated sequences of length 4000 from a 4 state HMM with self-transition probabilities

increasing from 0.75 to 0.95 and finally 0.999. In one experiment (top plot of figure 3.9)

we generated normal distributed observation from an informative output model with

means −2.0, 4.0, 1.0,−0.5 and standard deviation 0.5, in another experiment (bottom

plot of figure 3.9) we generated normal distributed observations from a less informative

output model with means −1.0, 0.5,−0.5, 0.0 and standard deviation 0.5. We initialize

the experiment as above and set the base distribution for the state means to be a 0 mean

normal with 2.0 standard deviation. Then, we greedily compute the error compared to
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Figure 3.9: iHMM error on increasing positively correlated data. The blue curve shows

the beam sampler while the red curve shows the Gibbs sampler performance. The dotted

line show the one standard deviation error bars.
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Figure 3.10: The 40’th sample of the beam sampler with every state represented by a

different color on the well-log dataset.

ground truth and average the results over 60 different random starting positions. The

top row shows that with an informative prior, both the Gibbs and beam sampler can

reduce the initial error by at least 50% independent of the correlation between hidden

states. When the output model is less informative however and there is little correlation

between the hidden states, the learning problem is hardest: the lower left plot shows that

both the beam and Gibbs sampler discover structure only slowly. When the correlation

increases, the learning problem should become easier. However, as the lower right plot

shows, although the beam sampler mixes increasingly well, the Gibbs sampler suffers

from slow random walk behavior.

The next experiment illustrates the performance of the iHMM on a changepoint de-
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tection problem. The data consists of 4050 noisy measurements of nuclear-response of

rock strata obtained via lowering a probe through a bore-hole. Figure 3.10 illustrates

this datasets. The data has been previously analyzed in Ruanaidh and Fitzgerald (1996)

by eliminating the forty greatest outliers and running a changepoint detection algorithm

with a fixed number of changepoints. This approach works well as this one-dimensional

dataset can be inspected visually to make a decision on whether to throw away data-

points and get a rough idea for the number of changepoints. However, we believe that

with a nonparametric model, we can automatically adapt the number of changepoints.

Moreover, by setting up a noise model with fat tails, we hope to automatically handle

the outlier problem.

We model the mean of the nuclear-response for every segment. First we normalize

the data to have zero mean; then we specify a zero mean normal distribution for the base

distribution H. We choose the variance of this normal to be the empirical variance of

the dataset. For the output model, we let F correspond to a Student-t distribution with

ν = 1, also known as the Cauchy distribution. We set the scale parameter for the Cauchy

distribution to twice the empirical standard deviation for the dataset. Since the Cauchy

likelihood is not conjugate with respect to the normal base distribution, we modified

the Gibbs sampler based on algorithm 8 in Neal (2000). We use the auxiliary variable

sampling scheme discussed in Gelman et al. (1995) to resample the segment means.

Figure 3.10 shows the results of one sample from the beam sampler: the iHMM

segments the dataset reasonably well and robustly handles the outliers. To compare the

Gibbs and beam samplers, we compute 50 samples after a burnin of 5000 iterations with

1000 iterations in between each sample. For every pair of datapoints we compute the

probability that they are in the same segment, averaged over the first five samples (left

plots in figure 3.11) and the last thirty samples (right plots in figure 3.11). First, note

that after the first 10000 iterations, the Gibbs sampler hasn’t discovered any structure

while the beam sampler has. This supports our claim that the beam sampler mixes faster

than the Gibbs sampler. Moreover, we expect that the Gibbs sampler will have trouble to

reassign the state assignment for whole segments because of slow random walk behavior.

The beam sampler on the other hand resamples whole hidden state sequences and should

be able to reassign whole segments more easily. The right plots of figure 3.11 confirm our

expectation: a careful inspection of both plots shows that the Gibbs sampler is visually

more black-white indicating that either two datapoints are always in the same cluster or

never in the same cluster; the beam sampler, on the other hand, has gray areas which

indicate that it averages over different assignments of the segments: e.g. the Gibbs plot

(upper right) suggests that the leftmost segment and rightmost segment are always in

the same state, while the beam sampler plot (bottom right) indicates that only part of

the time, the left and rightmost segments are in the same state (90% of the time).
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Figure 3.11: The left plots show how frequent two datapoints were in the same cluster

averaged over the first 5 samples. The right plots show how frequently two datapoints

were in the same cluster averaged over the last 30 samples.

Discussion A practical point of attention is that after sampling ut, we need to make

sure that all possible transition probabilities in πst−1 > ut are represented. This might

involve extending our representation of πst−1 and θ with new states sampled from their

posterior distribution. Since there are no observations associated with these new states,

the posterior distribution equals the prior distribution.

To conclude our discussion of the beam sampler, it is useful to point out that ut

need not be sampled from the uniform distribution on [0, πst−1,st ]. We can choose ut ∼
πst−1stBeta(a, b) which with the appropriate choice of a and b could bias our auxiliary

variable closer to 0 or closer to πst−1st . Smaller auxiliary variables imply that we consider

more transitions in the dynamic program, hence mixing can be faster, at a larger com-

putational cost. Larger auxiliary variables imply that the dynamic program is sparser,

hence mixing can be slower, at a smaller computational cost.
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3.2.3 The Embedded HMM Sampler

Neal et al. (2004) introduced the embedded HMM to do inference in nonlinear dynamical

systems. Their idea was to first embed an HMM into the space of the dynamical system by

assigning HMM states to a sampled discretisation of the space. Then, one runs a forward-

filtering backward-sampling iteration on the HMM to re-sample the state sequence. Since

the discretisation of the space is not chosen beforehand but rather adaptively sampled one

can prove that the sampled state sequences are exact samples from the posterior. In other

words, the embedded HMM for nonlinear dynamical systems addresses the problem that

there are an uncountable infinite number of possible hidden states by restricting inference

at each iteration to a finite HMM.

Exact inference for the iHMM faces a similar problem: instead of an uncountable

infinite number of states, there are a countable infinite number of states. Nonetheless we

can apply the same strategy: at each time step we sample a set of states which we call

the active pool of states. For reasons that will become clear the current state sequence

will always be part of the active pool. Then we sample the state sequence by running

a slightly modified version of the forward-filtering backward-sampling algorithm that is

restricted to states in the active pool. This idea is illustrated in figure 3.12.
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Figure 3.12: Trellis illustration of the active pool. In both pictures, the trellis for the

iHMM is shown. The three vertical dots indicate that there are an infinite number of

states which aren’t drawn. The horizontal dots indicate that the sequence has length

T . Note that not all possible transition arcs are draw for clarity but remember that

the graph connects all states between adjacent time steps where the transition matrix is

nonzero. Left: The state sequence s1 = 1; s2 = 4; s3 = 2; ... is highlighted in dark grey.

Right: A sample of an active pool with P = 2 is highlighted in light grey. Note that the

current state sequence (dark highlight in left picture) is always part of the active pool.

There is only one parameter in the inference algorithm: the size P of the active pool.
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Algorithm 4 outlines the embedded HMM sampler for the iHMM.

Algorithm 4 The embedded HMM sampler for the iHMM.

Initialise s, β randomly.

loop

Sample the transition matrix parameters π|s1:T , β

Sample the active pool C|s1:T , β

Sample the state sequence s1:T |C, π, y1:T , θ, β

Sample the base DP β|s1:T , α, γ

Sample the emission parameters θ|s1:T , y1:T , H

end loop

If we compare the beam sampler (algorithm 3) and the embedded HMM sampler

(algorithm 4), we find that the algorithms are exactly the same except for the steps that

re-sample the state sequence. We refer to section 3.2.2 for the description of the common

steps and focus here on how the embedded HMM sampler re-samples state sequences.

Sampling C|s1:T , β The recipe for sampling the active pool is extremely simple: for

each time step t, we set the first state in the pool equal to the current state at time t:

Ct1 = st. Then for p ∈ {2 · · ·P} we sample a stick index i from β and set Ctp = i. Note

that this allows for two Ct·’s to be equal. This step has O(TP ) computational complexity.

Sampling s1:T |C, π, y1:T , θ, β We re-sample the state sequence s1:T from the posterior

distribution3 ∏T
t=1 p(yt|st)

∏T
t=1 p(st|st−1)

p(y1:T )
∏T

t=1 βst
(3.13)

where each state is constrained to be in the active pool: st ∈ Ct·. This is the standard

posterior distribution reweighting the states by the probability that they were sampled

into the active pool.

Sampling from this posterior distribution can be done using the forward-filtering

backward-sampling procedure limited to states in the active pool C. For each time

step and each q ∈ {1 · · ·P} we compute

p(st = Ctq|y1:t) ∝
P∑
p=1

p(yt|st = Ctq)p(st = Ctq|st−1 = Ct−1,p)p(st−1 = Ct−1,p|y1:t−1)

βCtq
.

(3.14)

We then follow the same strategy as for the finite HMM and run a backward-sampling step

to sample the state sequence s1:T : we first sample ST from the density p(sT |y1:T , C, π, θ, β)

3In what follows, we leave out some conditioning variables for the sake of clarity.
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conditioned on all observed variables. Then we iteratively sample p(st|y1:T , st+1) ∝
p(st|y1:t)p(st|st+1).

It is clear that this procedure explicitly controls the computational cost of inference

since the forward-filtering backward-sampling has a computational cost of O(TP 2). Next

we show that this sampling scheme is correct by proving that detailed balance holds.

Detailed balance demands that for a transition kernel Q(s′1:T |s1:T ) and equilibrium

distribution p(s1:t|y1:T ) the following condition holds

p(s1:t|y1:T )Q(s′1:T |s1:T ) = p(s′1:t|y1:T )Q(s1:T |s′1:T ) (3.15)

for all state sequences s1:t, s
′
1:t. For any active pool C, the transition kernel is the product

of choosing the active pool given the state sequence and then choosing the new state

sequence given the active pool: Q(s′1:T |s1:T ) = p(s′1:T |C)p(C|s1:T ). Since we chose the

active pool by sampling i.i.d. states from the distribution β, we write

p(C|s1:T ) =
T∏
t=1

∏
p 6=st

βCtp . (3.16)

Using Bayes rule to rewrite p(s1:T |y1:T ), combining it with equation (3.13) and equa-

tion (3.16), we can expand out the left hand side of equation (3.15) as(∏T
t=1 p(yt|st)

∏T
t=1 p(st|st−1)

p(y1:T )

)(
T∏
t=1

∏
p 6=st

βCtp

)(∏T
t=1 p(yt|s′t)

∏T
t=1 p(s

′
t|s′t−1)

p(y1:T )
∏T

t=1 βs′t

)
.

We do the same expansion for the right hand side of equation (3.15) and find(∏T
t=1 p(yt|st)

∏T
t=1 p(st|st−1)

p(y1:T )
∏T

t=1 βst

) T∏
t=1

∏
p 6=s′t

βCtp

(∏T
t=1 p(yt|s′t)

∏T
t=1 p(s

′
t|s′t−1)

p(y1:T )

)
.

By moving the factors
∏T

t=1 βs′t and
∏T

t=1 βst from the denominator on one side to the

numerator of the other side, we find that both sides are equal to(∏T
t=1 p(yt|st)

∏T
t=1 p(st|st−1)

p(y1:T )

)(
T∏
t=1

T∏
p=1

βCtp

)(∏T
t=1 p(yt|s′t)

∏T
t=1 p(s

′
t|s′t−1)

p(y1:T )

)
.

This concludes the proof that detailed balance holds.

Discussion

We run a small experiment to compare the behavior of the embedded HMM sampler with

that of the beam sampler. In our experiment we generate a sequence of 1500 datapoints

from an HMM with a cyclic transition matrix: πi,j = 0.5 if i = j or i + 1 = j and 0

84



otherwise. The observations consist of an alphabet of 8 symbols; each HMM state emits

3 of the 8 symbols uniformly at random, one of the 8 symbols is unique to that state, the

two others are overlapping with two other states.

For every pool size P ∈ {2, · · · , 10} we run the embedded HMM sampler three times

and compare it to three runs of the beam sampler. We set the hyperpriors of the iHMM

at α = 1 and γ = 1 and run inference for 500 iterations. We compare the samplers

based on how fast they mix and wall clock time. The first 9 plots in figure 3.13 illustrate

one statistic of the samplers: the number of used states at each iteration. Recall that

the true number of states that generated the data is 4. The plots clearly show that the

embedded HMM sampler with a small number of states mixes very slowly. This is not

very surprising, e.g. for P = 2 the sampler will only consider two possible states at each

iteration. When P = 6 we can see that the embedded HMM mixes as fast as the beam

sampler. The bottom right plot shows the wall clock time in seconds of the embedded

HMM sampler for different values of P . When P is small, the embedded HMM sampler is

faster than the beam sampler; again this is not surprising as we’ve specifically restricted

the number of states the sampler considers.

Finally, we point out that other schemes for sampling the active pool C are possible.

In our experience, sampling from the base distribution β often finds a good active pool

while minimising the computational effort in choosing it.

3.2.4 Hyper parameter Learning

Section 3.1.1 contained some intuitions about the role of hyper parameters α and γ. To

recap, γ influences how frequently the hierarchical Polya urn will generate new states.

Hyper parameter α influences how often we will visit the oracle in the hierarchical Polya

urn, this has two effects. First it indirectly also influences how often new states are

generated. Secondly, it also influences how often the iHMM takes existing transitions

and how often it chooses a new transition: a small α will generally use previously taken

transitions leading to a sparse transition matrix. In other words, α controls the sparsity

of the iHMM’s transition matrix.

An important question when applying the iHMM in practice is whether to set or learn

the hyper parameters of the iHMM. In chapter 4 we will provide some insight into the

question of whether to fix or sample hyper parameters of the iHMM. In case we wish

to learn the hyper parameters of the iHMM, a reasonable prior for both α and γ is the

Gamma distribution. One can show that a simple auxiliary variable Gibbs sampler can

sample from the posterior distribution very efficiently. We refer to (Teh et al., 2006a,

appendix a) for full details of this sampler which readily applies to the infinite Hidden

Markov Model.
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Figure 3.13: This plot compares the embedded HMM sampler (blue) with that of the

beam sampler (red). The first 9 plots compare the mixing time, for different pool sizes P

of the embedded HMM. The Y-axis of the plots represent the number of used states in

the latent Markov chain at every iterations of the samplers; the number of states for the

chain that generated the data is 4. The last plot shows the wall clock time in seconds for

500 iterations for different pool sizes P .

3.3 Alternatives to the iHMM

The iHMM is an attempt to solve the model selection problem for HMM’s. It is a relatively

new method for solving this problem and a number of existing statistical techniques
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already exist. In this chapter we give a short overview of the most common methods and

how they relate to the iHMM.

3.3.1 Model Selection

There is a large body of work on model selection techniques for the HMM (Cappé et al.,

2005). The simplest technique uses maximum likelihood estimation to train HMM with

a varying number of hidden states and then use some regularisation method to penalise

models that overfit. Both AIC and BIC are common regularisation techniques used in

this space.

A different family of methods uses a fully Bayesian analysis of the HMM and tries to

estimate the marginal likelihood to perform model selection. One problem with this group

of methods is that computing the marginal likelihood of the Bayesian HMM is intractable.

We can distinguish a few practical approaches to approximate the marginal likelihood for

the HMM. The first family of approximations are based on MCMC: examples are An-

nealed Importance Sampling (Neal, 2001) and Bridge Sampling (Fruhwirth-Schnatter,

2004). MCMC methods for estimating marginal likelihoods are computationally expen-

sive and often don’t mix well.

A second and very elegant approximation to the exact marginal likelihood is the ap-

proach developed by Stolcke and Omohundro (1993). Note that in the graphical model

in figure 1.7, if the hidden states s1:T were observed, the parameters π and θ become

independent and assuming that the prior and likelihood are conjugate, we can compute

the marginal likelihood analytically. Stolcke and Omohundro (1993) propose to choose

a good state sequence and integrating out the other parameters to compute an approxi-

mation to the marginal likelihood. They devise a state-merging algorithm based on this

idea.

A third technique to approximate the marginal likelihood is based on variational

Bayesian (VB) inference. VB computes a lower bound on the marginal likelihood; MacKay

(1997) and Beal (2003) describe VB inference algorithms that bound the marginal likeli-

hood of an HMM. VB generalises EM as it doesn’t use a point estimate of the parameters

π, θ but rather an approximate posterior of these parameters. Moreover, VB also gener-

alises the idea in Stolcke and Omohundro (1993) as it doesn’t use a point estimate of the

state sequence s1:T but rather a full distribution on this quantity.

To illustrate the last technique we ran an experiment on a character prediction task.

We take the first 1000 characters from Alice’s Adventures in Wonderland as a training

set and evaluate different models on the subsequent 4000 characters. On one hand we

train the iHMM using the beam sampler using a burn-in of 1000 iterations and collecting

50 samples over the next 10,000 iterations. We chose the hyper priors for the iHMM to be

γ = 4 and α = 1. On the other hand we train a finite HMM using variational Bayes on a
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model with K = 1 to 50 hidden states. For the HMM transition matrix prior we choose

a symmetric Dirichlet with 4/K pseudo-counts for each state and a symmetric Dirichlet

with 0.3 pseudo-count for the emission distribution. The predictive performances for the

HMM and iHMM were averaged over 50 and 20 independent runs respectively.
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Figure 3.14: Comparing model selection with the iHMM on predicting characters for

Alice’s Adventures in Wonderland.

Figure 3.14 illustrates the estimated predictive log-likelihoods for the HMM and the

iHMM. We find that the iHMM has slightly superior predictive power when compared

to the HMM’s, even when we select the best number of hidden states (around K = 16).

The iHMM trained with the collapsed Gibbs sampler as well as the beam sampler both

converged to a posterior distribution over hidden state sequences with around 16 states,

showing that in terms of statistical performance, nonparametric Bayesian techniques are

an effective alternative to Bayesian model selection. The advantage of using an iHMM is

that we only trained one model.

3.3.2 Reversible Jump versus Nonparametric HMM

The model selection methods described above assume that one model with a fixed capacity

is the right model. Reversible jump MCMC methods are a family of techniques which

allow switching between models of varying capacity and hence take the uncertainty in

model capacity seriously. These methods were pioneered in Green (1995) and extended

to the context of HMM’s by Robert et al. (2000).

Ryden (2008) performs a detailed analysis of the reversible jump MCMC algorithm

on the HMM. The data {yt} consist of the 1700 daily log-returns from the S&P 500 stock

index during the 1950’s. The stochastic volatility model that is trained in Ryden (2008) is
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Figure 3.15: Comparing cluster occupancy numbers for the reversible jump MCMC (left)

with the iHMM (right) for the last 10,000 iterations of the sampler.

an HMM with normally distributed likelihoods having zero mean and variance σi for state

i. The prior for the standard deviations is σi ∼ Uniform(0, α) whith α ∼ Exp(5 maxt yt).

Ryden trains models with k ∈ {1, · · · , 8} hidden states over which he puts a uniform

prior. More details about the reversible jump algorithm and its implementation can be

found in Ryden (2008).

We compare Ryden’s Matlab implementation to the iHMM with exactly the same

hyper parameters on σi. We chose vague hyper priors for the iHMM: α = 1, γ = 1.

We ran both samplers for 100,000 iterations and plot the histogram of cluster occupancy

counts for the last 10,000 iterations in figure 3.15. Observe that the iHMM settles for a

larger number of hidden states than the solution found by the reversible jump MCMC

method. A closer inspection for the samples offers the following explanation. For each

sample, almost all of the latent variables of the iHMM are in fact in one of three states;

only very few latent variables are in other states. The reason is that the iHMM is

continually exploring new states; this means that in every iteration a few latent variables

will be assigned to a separate cluster. Most of the time, these new clusters disappear

after one or two iterations, but then new clusters emerge for different latent variables.

In that sense, our results are in close agreement with the findings in Ryden (2008).

More interestingly though, we can compute the execution time of the iHMM versus the

reversible jump MCMC method. We find that on the same machine the reversible jump

MCMC method uses four times as much computational time than the iHMM.

3.3.3 Conclusion

There are a few other alternatives to the iHMM for model selection that we have not

discussed here. However, we believe that compared to the most popular classical model

selection approaches, the iHMM is a valid alternative which gives qualitatively very sim-
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ilar results at a much lower computational cost.

3.4 Extensions

We conclude this chapter with an overview of some extensions to the basic iHMM model.

3.4.1 The Input Output iHMM

k = 1 ¢ ¢ ¢1

u = 1 ¢ ¢ ¢ U
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Figure 3.16: The graphical model for the IO-iHMM. The dotted lines denote the fact that

we can choose to make either the Markov chain or the observations (or both) dependent

on a set of inputs.

The iHMM, like the HMM assumes that the Markov chain evolves completely au-

tonomously and the observations are conditionally independent given the Markov chain.

In many real scenarios, the Markov chain can be affected by external factors: e.g. a

robot is driving around in an interior environment while taking pictures. The sequence

of pictures could be modelled by an iHMM where the latent chain represents the robot’s

location (e.g. a room index). If our robot doesn’t perform a random walk through the

environment but uses a particular policy, we can integrate the robot’s actions as inputs

to the iHMM. We call this model the Input-Output iHMM (IO-iHMM) in analogy to its

finite counterpart the IO-HMM by Bengio and Frasconi (1995). Figure 3.16 illustrates the

graphical model for the IO-iHMM. A different way to think about the IO-iHMM is as a

conditional sequence model: it predicts the sequence of observations y1:T from inputs e1:T

through a hidden representation s1:T . This model can be useful for structured sequence

prediction problems.

We can think of the IO-iHMM where the transition probabilities depend on the inputs

et as an iHMM with a 3-dimensional transition matrix: for each input symbol e and each
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previous state s, the probabilities for moving to the next state are p(st|st−1, et) = πet,st−1,st .

The vectors πe,s,· can be constructed similarly to the rows of the transition matrix in the

iHMM, by drawing πe,s,·
iid∼ Stick(αβ). One effect of introducing a dependency on input

variables is that the number of parameters increases. If we train a finite sequence of

length T with the iHMM and find an effective number of states equal to K then we have

to learn O(K2) transition matrix parameters. If we train the same sequence with the

IO-iHMM using an input sequence with E possible input symbols and find K effective

states, then we have to learn O(EK2) transition matrix parameters. Similarly, if we

introduce a dependency of the observation model on the input sequence, yt ∼ F (θst,et),

we augment the number of parameters of the observation model with a factor of E. This

suggests that either: a) more data will be needed to learn a model with the same capacity

as the iHMM; b) with the same amount of data a model with smaller capacity will be

learnt or c) the model complexity must be reduced by coupling the parameters.

3.4.2 The iHMM with Pitman-Yor Base Distribution

From the Polya urn scheme, we know that the base process (the oracle urn) behaves

like an average distribution over the states. In other words, the base process influences

the expected number of states visited for a given sequence length. The left plot in

figure 3.17 plots the frequency of colours in a Polya urn for a Dirichlet process against

the colour’s rank. From this plot, we can see that the Dirichlet process is quite specific

about the distribution implied in the Polya urn: because the right tail of the plot drops

off sharply, we know that the number of colours that appear only once or twice is very

small. A two parameter generalisation of the Dirichlet process, known as the Pitman-Yor

process (Pitman (2006)) introduces more flexibility in this behaviour. The right plot in

figure 3.17 shows that the frequency-rank for draws from a Pitman-Yor process can be

more specific about the tails. More in particular, the Pitman-Yor process fits a Power-

law distribution; Goldwater et al. (2006) and Teh (2006) showed how in the context of

language modelling the Pitman-Yor distribution encodes more realistic priors. Analogous

to the Dirichlet process, the Pitman-Yor process has a stick breaking constructing: the

sticks for the Pitman-Yor distribution with parameters d and α can be constructed by

drawing β̂i
iid∼ Beta(1 − d, α + id) and βi = β̂i

∏i−1
l=1(1 − β̂l). Note that the Pitman-Yor

process with d = 0 is exactly the Dirichlet process.

In the context of the iHMM, it is fairly straightforward to replace the Dirichlet process

base distribution by a Pitman-Yor distribution allowing the iHMM to use more states.

The collapsed Gibbs sampler works with only minor adjustments, however, it is critical

that the beam sampler in this context be implemented with great care. As we mentioned

in the discussion of the beam sampler, we need to consider all transitions ij where πij >

ut. Unfortunately, the quantity πij decreases much faster for the Pitman-Yor process
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Figure 3.17: In this plot we show (on a log-log scale) the frequency versus rank of colours

in the Polya urn for both the Dirichlet process (left) and the Pitman-Yor process (right).

We see that the data from the Pitman-Yor process can be fitted with a straight line

implying that it follows a power-law behavior; this is not the case for the Dirichlet process.

stick breaking construction than the Dirichlet process stick breaking construction. The

advantage is that it allows for many small transition probabilities, unfortunately it also

means that the quantity
∑

l πil decreases very slowly. Since the beam sampler must

consider all πij > ut, it will need to expand the transition matrix to K states so that∑
l>K πil < ut and it is sure it considered all possible states. This means when running

the forward-filtering backward-sampling algorithm that we potentially end up with a very

large transition matrix. Luckily most of the entries in π will be quite small (otherwise the

remaining mass
∑

j>K πij can’t decrease slowly). Hence, while expanding the transition

matrix we can keep a sorted list of matrix entries and when we run the forward-filtering

step, at each time step we walk down this list until ut becomes larger than the elements in

the list. The embedded HMM from section 3.2.3 can easily be adapted to perform exact

inference for the iHMM with Pitman-Yor base distribution as well. The major difference

is that the active pool C is now sampled from the stick β which now follows a Pitman-Yor

distribution.

3.4.3 The Sticky and Block Diagonal iHMM

In many applications, it is useful to explicitly model the time scale of transitions between

states. For an HMM or iHMM, the weight on the diagonal of the transition matrix

controls the frequency of state transitions. The probability that we stay in state i for g

time steps is a geometric distribution p(g) = πg−1
ii (1− πii).

As we noted in the introduction to the iHMM, the original hierarchical Polya urn

description in Beal et al. (2002) introduced a self transition hyper parameter in the
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iHMM adding prior probability mass to the diagonal of the transition matrix π. Fox et al.

(2009b) further elaborated this idea in the hierarchical Dirichlet process representation

of the iHMM. They also developed a dynamic programming based inference algorithm

for a truncated version of the model. They coined it the sticky iHMM (or sticky HDP-

HMM). The sticky iHMM is particularly appropriate for segmentation problems where

the number of segments is not known a priori. Fox et al. (2009b) show impressive results

on a speaker diarization task.

Formally, the sticky iHMM still draws the base measure β ∼ Stick but then draws the

rows of the transition matrix from the following distribution

πi·
iid∼ Dirichlet(

α

α + κ
β1,

α

α + κ
β2, · · · ,

αβi + κ

α + κ
, · · · ). (3.17)

The effect of this change is that for all states the diagonal entry carries more weight. The

parameter κ controls the switching rate or length scale of the process.

A more general model which allows grouping of states into a block diagonal structure

is given by the block-diagonal infinite HMM (BD-iHMM) introduce in Stepleton et al.

(2009). When the blocks are of size one, this is a sticky iHMM, but larger blocks allow

unsupervised clustering of states. The block-diagonal iHMM is used for unsupervised

learning of view-based object models from video data, where each block or cluster of

states corresponds to an object and the model assumptions capture the intuition that

temporally contiguous video frames are more likely to correspond to different views of

the same object than to different objects.

Another approach to introduce more control over the self-transition probability is to

have an explicitly duration model for the time spent in a particular state. This type of

model is known as a hidden semi-Markov model. Inference in these models is more costly

than in HMM’s and nonparametric versions have not yet been explored.

3.4.4 The Auto-Regressive iHMM & Switching Linear Dynamical

Systems

Many time series are modelled using auto-regressive (AR) or linear dynamic systems

(LDS). These models assume that the dynamics of the process are stationary and linear.

More powerful nonlinear generalisations can be obtained by switching between a fixed

set of stationary dynamics. A model where the switching is driven by an HMM is often

called a switching linear dynamical systems 4; Ghahramani and Hinton (2000) review a

number of variants of the SSSM all of whom share the property that there are a fixed

finite number of dynamics.

4Also known as a Markov-switching model, Markov jump system or Switching State Space Models
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Fox et al. (2009a) extended the SSSM so that an arbitrary large number of dynamics

can be learnt from the data by replacing the finite Markov chain underlying the SSSM

with an iHMM. They explored two prototypical variants of the SSSM. The first model

assumes the observations follow auto-regressive dynamics; this model is referred to as

the AR-iHMM. The second model assumes that only part of the continuous variables are

observed and the unobserved variables follow linear dynamics; this model is referred to

as the infinite switching linear dynamical system. The inference in Fox et al. (2009a) is

implemented on a finite truncation of the nonparametric model. In this incarnation, the

model is similar to the Bayesian switching linear Gaussian model from Chiappa (2008)

except that the nonparametric model introduces an additional “prior on the prior” for

the rows of the transition matrix.

Figure 3.18 illustrates the graphical model for the LDS SSSM variant. Inference

in both models can be done efficiently using the beam sampler. For the AR model, a

collapsed Gibbs sampler is possible while for the LDS we are only aware of algorithms

that explicitly represent the hidden state of the LDS.
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Figure 3.18: The graphical model for a switching state space model with a potential

infinitely large state space.

3.5 Applications & Further Reading

The iHMM has been the foundation of a number of application in bio-informatics. Beal

and Krishnamurthy (2006) describes how the iHMM can be used for clustering gene

expression time course data. Their results show a clear advantage of the iHMM over

model selection using the finite HMM on various different clustering metrics. Sohn and
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Xing (2007) introduces a model that is equivalent to the iHMM called the Hidden Markov

Dirichlet Process. They use the iHMM to model genetic recombinations where the number

of founders can be arbitrary large. Their results also show a clear improvement over model

selection using the HMM.

Change point and outlier detection in time series can often be modelled using Markov

models. Van Gael et al. (2008a) perform segmentation of a one dimensional time series

with outliers using the iHMM. Fox et al. (2008b) show impressive results using the block

diagonal iHMM for a speaker diarization task. Paisley and Carin (2008) solve a music

segmentation task using the iHMM; their additional contribution generalises the iHMM

to use arbitrary stick breaking constructions. Pruteanu-Malinici and Carin (2008), Zhang

et al. (2009) show how to model abnormal events in video sequences using the iHMM.

Stepleton et al. (2009) performs gesture classification in video streams using the block

diagonal iHMM.

Another interesting extension of the iHMM is the multi-task learning iHMM in Dunson

(2007). In this model an additional nested Dirichlet process is used to couple different

iHMM’s for multi-task learning. More specifically in this model, dubbed the nDP-iHMM,

there are J learning tasks, each modelled with its own iHMM. The base distribution for

each of the J iHMM’s is a draw from a nested Dirichlet process. In other words, the

iHMM base distributions are shared between tasks. Learning is done using a blocked

Gibbs sampler.

Doshi-Velez (2009) introduce a model for reinforcement learning based on the iHMM

called the infinite Partially Observable Markov Decision Process or iPOMDP.

We conclude this section by pointing to chapter 4 for a more in-depth look at an

application of the iHMM in natural language processing.

3.6 Discussion

We reviewed both the hierarchical Polya urn construction and the hierarchical Dirichlet

process construction for the iHMM and showed a proof that both formalisations are

equivalent. Building on these different representations of the iHMM, we described a

collapsed Gibbs sampler and two dynamic programming based samplers. Both inference

methods are only marginally harder to implement than their HMM based counterparts.

We believe this makes the iHMM an attractive solution to the problems one faces when

learning the number of states for an HMM.

As we have described, there are a number of interesting ways of extending iHMMs. We

can allow inputs and outputs, sticky self transitions, block structured models, Pitman-Yor

base distributions, auto regressive and switching linear structure. Given the important

role of hidden Markov models in time series and sequence modelling, and the flexibility
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of nonparametric approaches, there is great potential for many future applications and

extensions of the infinite hidden Markov model.
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Chapter 4

Unsupervised Part-of-Speech Tagging

with Nonparametric Models

Many Natural Language Processing (NLP) tasks are commonly tackled using supervised

learning approaches. These learning methods rely on the availability of labelled data sets

which are usually produced by expensive manual annotation. For some tasks, we have the

choice to use unsupervised learning approaches. While they do not necessarily achieve

the same level of performance, they are appealing as unlabelled data is usually abundant.

In particular, for the purpose of exploring new domains and languages, obtaining labelled

material can be prohibitively expensive and unsupervised learning methods are a very

attractive choice.

In this chapter we will look at a problem called Part-of-speech (PoS) tagging. PoS-

tagging is a task in natural language processing with the goal of labelling words in a

sentence with their appropriate syntactic class. E.g.

The man sat on the moon .

Determiner Noun Verb Preposition Determiner Noun .

PoS tagging is a standard component in many linguistic processing pipelines, so any

improvement on its performance is likely to impact a wide range of tasks. Although

there exist various approaches to PoS tagging, we will look more closely at PoS taggers

based on HMM’s. The history of HMM based taggers goes as far back as Church (1988)

but it was the work of Kupiec (1992), Merialdo (1994), Weischedel et al. (1993) which

introduced supervised training algorithms. The recent work of Johnson (2007), Goldwater

and Griffiths (2007), Gao and Johnson (2008) explored the task of unsupervised part-of-

speech tagging (PoS) using Hidden Markov Models.

A key issue that sets supervised and unsupervised learning apart is that a completely

unsupervised learning method will discover the statistics of a data set according to a

particular model choice but these statistics might not correspond exactly to our linguistic
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intuition about PoS tags. Johnson (2007) and Gao and Johnson (2008) assume that

words are generated by a hidden Markov model and find that the resulting states strongly

correlate with POS tags. Nonetheless, identifying the HMM states with appropriate POS

tags is hard. Because many evaluation methods often require POS tags (rather than HMM

states) this identification problem makes unsupervised systems difficult to evaluate.

Moreover, not only is it hard to map HMM states to PoS tags, choosing the number of

states of the HMM is a non-trivial problem. Since the HMM finds statistical properties of

the data, it might find that two states map to the same PoS tag or two PoS tags might map

to the same HMM state: e.g. nouns and proper nouns have similar statistical properties

and hence might all cluster in the same HMM state. This means that in addition to finding

a good mapping from HMM states to PoS tags, unsupervised PoS tagging methods that

use HMM’s need to take the model selection problem seriously. In previous work on

unsupervised PoS tagging Johnson (2007) reports results for different numbers of hidden

states but it is unclear how to make this choice a priori, while Goldwater and Griffiths

(2007) leave this question as future work. In this chapter we will take an in-depth look

at how nonparametric Bayesian hidden Markov models can be used to handle the model

selection problem.

The chapter is structured as follows: first we introduce how HMM’s can be used for

PoS tagging and describe the previous work on using unsupervised learning. Next, we

take an in depth tour on how to model the PoS-tagging task using the iHMM. Then

we show how we can use the iHMM for unsupervised PoS tagging and describe some

empirical results. This chapter is based on Van Gael et al. (2009).

4.1 Unsupervised PoS Tagging using the HMM

The basic idea for using first order HMM’s for PoS-tagging is to assume the data is

generated from the following generative process. For a sentence of length T , a sequence

of tags s1:T is generated using a Markov chain with transition matrix π. Next, given

the tags s1:T a sequence of words is generated using a set of emission distributions θ as

wt ∼ θst . This generative model can easily be generalised to higher order Markov chains

or multiple state sequences. For simplicity, in this section we will assume a first order

Markov and single state sequence.

One way to do unsupervised training of the HMM is to compute the maximum-

likelihood estimator of the following model

π̂, θ̂ = arg max
π,θ

p(w1:T |π, θ) = arg max
π,θ

∑
s1:T

p(w1:T , s1:T |π, θ). (4.1)

When a prior distribution on the parameters is available, a maximum-a-posteriori solution
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can be found by optimising

π̂, θ̂ = arg max
π,θ

p(w1:T |π, θ)p(π, θ) = arg max
π,θ

∑
s1:T

p(w1:T , s1:T |π, θ)p(π, θ). (4.2)

Both the maximum-likelihood and maximum-a-posteriori solutions can be computed ef-

ficiently using the EM algorithm. A careful analysis of the EM algorithm in Johnson

(2007) shows that these point estimates suffer from overfitting. One particular form of

overfitting is illustrated in figure 4.1. The figure shows various HMM based models that
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Figure 4.1: Comparison of unsupervised PoS taggers (with permission Johnson (2007)).

The x-axis represents the tags in decreasing order of usage. The y-axis shows the actual

number of words labeled with a particular tag. The red line denotes the empirical distri-

bution from the Penn Treebank; the blue line represents the distribution from training an

HMM with 50 states using variational Bayesian inference; the dotted green line represents

the distribution of tags when training an HMM with 50 states using EM; the dotted red

line represents the distributioin of tags when training an HMM with 25 states using EM.

were trained on the Penn Treebank corpus. In this labelled corpus, we can compute the

average number of words labelled with each tag. As the red line in figure 4.1 illustrates,

the empirical tag frequencies show a power-law type of behaviour: a few states label many

words and many states label only a few words. When we compare the average number

of words labelled in the maximum-likelihood solution we find a much flatter curve: all

states label a lot of words. The underlying statistical problem is that the maximum-

likelihood solution uses more states to find a better fit. Empirically it was found that a

consequence of this behaviour is that the resulting HMM estimate has a dense transition

matrix and dense output distributions. This is in contrast to what we know is true of

natural language: e.g. we hardly ever see transitions from determiners to verbs.

In section 1.1 we argued that a Bayesian treatment of a probabilistic model can help

solve this problem. By introducing an appropriate prior distribution over the transition
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and emission matrices, we can encode our beliefs about natural language to find better

solutions to the unsupervised PoS-tagging problem. In the HMM for PoS-tagging sce-

nario, we would integrate over the parameters π, θ to find the posterior assignment of tag

assignments

p(s1:T |w1:T ) ∝
∫
p(w1:T |s1:T , θ)p(s1:T |π)p(π, θ)dπdθ, (4.3)

or we would compute the posterior distribution over the parameters integrating out the

tag assignments

p(π, θ|w1:T ) =
∑
s1:T

p(w1:T |s1:T , θ)p(s1:T |π)p(π, θ)dπdθ). (4.4)

We can use a Dirichlet distribution as the prior on π and θ and leverage the properties

described in appendix A to encode our prior belief that the transition and emission

distribution are sparse. This is exactly what was done in Johnson (2007), Goldwater

and Griffiths (2007), Gao and Johnson (2008): by choosing a sparsity inducing Dirichlet

prior, unsupervised training of the PoS-tagging task finds PoS assignments that are much

closer to what we see in natural language. Figure 4.1 illustrates this quite nicely: the

blue curve represents the word assignment distribution when training an HMM in a fully

Bayesian way using variational Bayes. It is clear that the blue curve matches the empirical

state-to-word assignment much better than the EM-based approaches.

We postpone our discussion of our evaluation methodology and experiments to sec-

tion 4.3. At this point we point to the following question raised in Johnson (2007),

Goldwater and Griffiths (2007): how do we choose the number of states for the iHMM?

4.2 Unsupervised PoS Tagging using the iHMM

Our discussion above suggests that the iHMM could be a good candidate for modelling

PoS sequences. It essentially behaves in the same way as the HMM but it has the added

flexibility to adapt the number of states to the data automatically. In the following

subsections we will start from an initial base model and incrementally extend the model

to make it more appropriate for tagging natural language.

4.2.1 The Baseline iHMM

Our baseline iHMM for PoS tagging builds directly on the HMM model defined in the

previous section. Since we have discrete observations (the words) we use a discrete output

distribution. The Dirichlet distribution is the conjugate prior to the discrete distribution

and hence we use it as the base distribution H in our iHMM. The generative model for
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this iHMM can be described as follows

β|γ ∼ Stick(γ)

πk·|α, β
iid∼ Stick(αβ) ∀k ∈ {1 · · ·∞},

st|st−1, π ∼ πst−1,· with s0 = 1,

θk|δ
iid∼ Dirichlet(δ) ∀k ∈ {1 · · ·∞},

wt|st, θ ∼ Discrete(θst).

4.2.2 The Pitman-Yor iHMM

As we discussed in section 3.4.2, the Dirichlet process defines a very specific, non power-

law distribution over the number of states in the iHMM. Particularly in the context of

natural language processing, Goldwater and Griffiths (2007) have shown that the Pitman-

Yor distribution can more accurately capture power-law like distributions that frequently

occur in natural language. Hence, a first extension to our baseline iHMM is to intro-

duce a Pitman-Yor base distribution for β. More specifically, we choose to construct β

from a Pitman-Yor stick breaking construction with discount parameter 0 ≤ d < 1 and

concentration parameter γ > −d. The full probabilistic model is now

β|γ, d ∼ PYStick(d, γ)

πk·|α, β
iid∼ Stick(αβ) ∀k ∈ {1 · · ·∞},

st|st−1, π ∼ πst−1,· with s0 = 1,

θk|δ
iid∼ Dirichlet(δ) ∀k ∈ {1 · · ·∞},

wt|st, θ ∼ Discrete(θst).

4.2.3 The PoS-tagging iHMM

During our initial experiments with the Pitman-Yor iHMM we set δ, the hyper parameter

of the Dirichlet prior on the multinomial output distributions, to induce sparsity in the

output distributions of the iHMM. This solution is not entirely satisfying as it implies

that we believe that all states will have an equal sparsity level whereas in natural language

we expect tags such as nouns and verbs to have dense output distributions whereas tags

such as determiners to have sparse output distributions.

The work of Nemenman et al. (2001) (reviewed in appendix A) addresses this problem:

by moving from a Dirichlet to a mixture of Dirichlet distributions. One possible way

to achieve this is by putting a prior over the Dirichlet parameter δ, say δ ∼ Gamma.

By integrating δ over the prior distribution it essentially follows an infinite mixture of

Dirichlet distributions with varying levels of δ.

101



Figure 4.2: This plot shows the stick breaking construction of the Dirichlet Process with

Gamma base measure. The blue lines represent the first 10 sticks at their respective

locations in parameter space with their height denoting the probability. The red line

represents the underlying Gamma(0.6, 0.3) distribution.

In our PoS-tagging application we take this idea one step further: instead of choosing a

Gamma distribution as our mixing distribution, we choose to use a Dirichlet Process prior

with Gamma base distribution. Figure 4.2 shows a sample from this prior distribution:

there are a potentially infinite number of sparsity levels, but we expect some tag classes

to exhibit similar sparsity structure.

With all the improvements listed above, we believe that the following model is a much

better prior for unsupervised PoS tagging than the baseline iHMM. The generative model

for our final PoS-tagging iHMM is

β|γ, d ∼ PYStick(d, γ)

πk·|α, β
iid∼ Stick(αβ) ∀k ∈ {1 · · ·∞},

st|st−1, π ∼ πst−1,· with s0 = 1,

H ∼ DP(µ,Gamma(0.6, 0.3)),

δk|H ∼ H ∀k ∈ {1 · · ·∞},
θk|δ

iid∼ Dirichlet(δk) ∀k ∈ {1 · · ·∞},
yt|st, θ ∼ Discrete(θst).

The parameterization of the Gamma distribution is arguable; we selected this distribution

so it had a mean of 2 and slightly larger standard deviation of roughly 2.5.

4.3 Evaluation

As we alluded to in section 4.1, evaluating unsupervised PoS tagging is difficult mainly

due to the fact that the outputs of such systems are not actual PoS tags but HMM
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state identifiers. Therefore it is impossible to evaluate performance against a manually

annotated gold standard using accuracy. Recent work (Johnson, 2007, Goldwater and

Griffiths, 2007, Gao and Johnson, 2008) on this task explored a variety of methodologies

to address this issue.

Let C be a random variable denoting the class assignment in the gold standard and

let K be a random variable denoting the clustering. Two basic measures to evaluate a

clustering against a labelled data set is to compute the homogeneity and completeness.

Homogeneity measures the conditional entropy of the class distribution in the gold stan-

dard given the clustering: 1 − H(C|K)/H(C). Completeness is the dual, it measures

the conditional entropy of clustering given the class distribution in the gold standard:

1 −H(K|C)/H(K). To illustrate these two quantities consider the confusion matrix in

table 4.1 The vertical axis corresponds to states in the clustering whereas the horizon-

Noun Determiner Verb

State 1 2 0 0

State 2 2 1 0

State 3 0 1 4

Table 4.1: Confusion matrix for a toy clustering.

tal axis corresponds to ground truth labels. The entries in the matrix represent how

many data points were labelled in a particular state and have an actual ground truth

labelling corresponding to their column. Homogeneity measures whether the clustering

is indicative of a single ground truth cluster. In other words, whether entries in a row all

cluster in a single cell. E.g. state 1 always map onto nouns: it has maximal homogeneity.

Completeness measures whether a ground truth label is indicative of a clustering state.

In other words, whether entries in a column all cluster in a single cell. E.g. nouns map

to both state 1 and state 2: completeness is not maximal.

Although homogeneity and completeness are useful measures for unsupervised PoS

tagging, it is common to summarise the quality of a clustering using a single number.

The most common approach is to use the Variation of Information (VI) (Meila, 2007)

which is defined as V I = H(C|K)+H(K|C). As Johnson (2007) points out, VI is biased

towards clusterings with a small number of clusters. A different evaluation measure that

uses the same quantities but weighs them differently is the V-measure (Rosenberg and
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Hirschberg, 2007), which is defined in Equation 4.5 by setting the parameter β to 1.

h = 1− H(C|K)

H(C)

c = 1− H(K|C)

H(K)

Vβ =
(1 + β)hc

(βh) + c
(4.5)

Vlachos et al. (2009) noted that V-measure favours clusterings with a large number

of clusters. Both of these biases become crucial in our experiments, since the number

of clusters (states of the iHMM) is not fixed in advance. Vlachos et al. proposed a

variation of the V-measure, V-beta, that adjusts the balance between homogeneity and

completeness using the parameter β in Eq. 4.5. More specifically, setting β = |K|/|C|
assigns more weight to completeness than to homogeneity in case |K| > |C| since the

former is harder to achieve and the latter is easier when the clustering solution has more

clusters than the gold standard has classes. The opposite occurs when |K| < |C|. In case

|K| = |C| the score is the same as the standard V-measure.

It is worth mentioning that, unlike V-measure and V-beta, VI scores are not nor-

malised and therefore they are difficult to interpret. Meila (2007) presented two normal-

isations, acknowledging the potential disadvantages they have. The first one normalises

VI by 2 log(max(|K|, |C|)), which is inappropriate when the number of clusters discov-

ered |K| changes between experiments. The second normalisation involves the quantity

logN which is appropriate when comparing different algorithms on the same data set (N

is the number of instances). However, this quantity depends exclusively on the size of

the data set and hence if the data set is very large it can result in normalised VI scores

misleadingly close to 100%. This does not affect rankings, i.e. a better VI score will also

be translated into a better normalised VI score. In our experiments, we report results

only with the un-normalised VI scores, V-measure and V-beta.

All the evaluation measures mentioned so far evaluate PoS tagging as a clustering

task against a manually annotated gold standard. While this is reasonable, it still does

not provide means of assessing the performance in a way that would allow comparisons

with supervised methods that output actual PoS tags. Even for the normalised measures

V-measure and V-beta, it is unclear how their values relate to accuracy levels. Gao and

Johnson (2008) partially addressed this issue by mapping states to PoS tags following

two different strategies, cross-validation accuracy, and greedy 1-to-1 mapping, which

both have shortcomings. We argue that since an unsupervised PoS tagger is trained

without taking any gold standard into account, it is not appropriate to evaluate against

a particular gold standard, or at least this should not be the sole criterion. The fact

that different authors use different versions of the same gold standard to evaluate similar
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experiments (e.g. Goldwater and Griffiths (2007) versus Johnson (2007)) supports this

claim. Furthermore, PoS tagging is seldom a goal in itself, but it is a component in a

linguistic pipeline.

In order to address these issues, we perform an extrinsic evaluation using a well-

explored task that involves PoS tags. While PoS tagging is considered a pre-processing

step in many natural language processing pipelines, the choice of task is restricted by the

lack of real PoS tags in the output of our system. For our purposes we need a task that

relies on discriminating between PoS tags rather than the PoS tag semantics themselves,

in other words, a task in which knowing whether a word is tagged as noun instead of

a verb is equivalent to knowing it is tagged as state 1 instead of state 2. Taking these

considerations into account, in Section 4.4 we experiment with shallow parsing in the

context of the CoNLL-2000 shared task (Sang and Buchholz, 2000) in which very good

performances were achieved using only the words with their PoS tags. Our intuition

is that if the iHMM (or any unsupervised PoS tagging method) has a reasonable level

of performance, it should improve on the performance of a system that does not use

PoS tags. Moreover, if the performance is very good indeed, it should get close to the

performance of a system that uses real PoS tags, provided either by human annotation

or by a good supervised method.

4.4 Experiments

In all our experiments, the Wall Street Journal (WSJ) part of the Penn Treebank (Marcus

et al., 1994) was used. As explained in Section 4.3, we evaluate the output of the iHMM

in two ways, as a clustering with respect to a gold standard and as direct replacement

of the PoS tags in the task of shallow parsing. In each experiment, we obtain a sample

from the iHMM over all the sections of WSJ. The states for sections 15-18 and 20 of the

WSJ (training and testing sets respectively in the CoNLL shared task) are used for the

evaluation based on shallow parsing, while the remaining sections are used for evaluation

against the WSJ gold standard PoS tags using clustering evaluation measures.

We performed three runs with the iHMM: one run with DP prior and fixed γ, α,

one with PY prior and fixed d, γ, α and one with DP prior but where we learn the hyper

parameters γ, α from the data. Our inference algorithm uses 1000 burn-in iterations after

which we collect a sample every 1000 iterations. Our inference procedure is annealed

during the first 1000 burn-in and 2400 iterations by powering the likelihood of the output

distribution with a number that smoothly increases from 0.4 to 1.0 over the 3400 first

iterations. The numbers of iterations reported in the remainder of the section refer to the

iterations after burn-in. We initialised the sampler by: a) sampling the hyper-parameters

from the prior where applicable, b) uniformly assign each word one out of 20 iHMM
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states. For the DP run with fixed parameters, we chose α = 0.8 to encourage some

sparsity in the transition matrix and γ = 5.0 to allow for enough hidden states. For the

PY run with fixed parameters, we chose α = 0.8 for similar reasons and d = 0.1 and

γ = 1.0. We point out that one weakness of MCMC methods is that they are hard to

test for convergence. We chose to run the simulations until they became prohibitively

expensive to obtain a new sample.
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Table 4.2: Performance of the three iHMM runs according to clustering evaluation mea-

sures against number of iterations (in thousands).

First, we present results using clustering evaluation measures which appear in the

figures of Table 4.2. The three runs exhibit different behaviour. The number of states

reached by the iHMM with fixed parameters using the DP prior stabilises close to 50

states, while for the experiment with learnt hyper parameters the number of states grows

more rapidly, reaching 194 states after 8,000 iterations. With the PY prior, the number
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of states reached grows less rapidly reaching 90 states. Note that for the latter two, the

number of states of the iHMM seems to still be growing at the end of our experiment.

On one hand this is a disappointing result in that the computational complexity of our

methods do not scale sufficiently to explore the stationary distribution of the Markov

chain. On the other hand, we argue that all runs achieve better performances with respect

to all measures used as the number of iterations grows. We argue that notwithstanding

the fact that our chains have not yet mixed properly, these results suggest that the Markov

chains explored so far exhibit appealing empirical properties.

It is interesting to notice how the measures exhibit different biases, in particular that

VI penalises the larger numbers of states discovered in the DP run with learnt parameters

as well as the run with the PY prior, compared to the more lenient scores provided by

V-measure and V-beta. The latter though assigns lower scores to the DP run with learnt

parameters because it takes into account that the high homogeneity is achieved using

even more states.

The closest experiment to ours is the one by Gao and Johnson (2008) who run their

Bayesian HMM over the whole WSJ and evaluate against the full gold standard, the only

difference being is that we exclude the CoNLL shared task sections from our evaluation,

which leaves us with 19 sections instead of 24. Their best VI score was 4.04 which they

achieved using the collapsed, sentence-blocked Gibbs sampler with the number of states

fixed to 50. The VI score achieved by the iHMM with fixed parameters using the PY prior

reaches 3.73, while using the DP prior VI reaches 4.32 with learnt parameters and 3.93

with fixed parameters. These results, even if they are not directly comparable, are on par

with the state-of-the-art, which encouraged us to proceed with the extrinsic evaluation.
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Table 4.3: Performance of the output of the three iHMM runs when used in shallow

parsing against number of iteretions (in thousands).

For the experiments with shallow parsing we used the CRF++ toolkit1 which has

an efficient implementation of the model introduced by Sha and Pereira (2003) for this

1http://crfpp.sourceforge.net/
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task. First we ran an experiment using the words and the PoS tags provided in the

shared task data and the performances obtained were 96.07% accuracy and 93.81% F-

measure. The PoS tags were produced using the Brill tagger (Brill, 1992) which uses

transformation-based learning and was trained using the WSJ corpus. Then we ran

an experiment removing the PoS tags altogether, and the performances were 93.25%

accuracy and 88.58% F-measure respectively. This gave us some indication as to what

the contribution of the PoS tags is in the context of the shallow parsing task at hand.

The experiments using the output of the iHMM as PoS tags for shallow parsing are

presented in table 4.3. The best performance achieved was 94.48% and 90.98% in accuracy

and F-measure, which is 1.23% and 2.4% better respectively than just using words, but

worse by 1.57% and 2.83% compared to using the supervised PoS tagger output. Given

that the latter is trained on WSJ we believe that this is a good result. Interestingly,

this was obtained by using the last sample from the iHMM run using the DP prior with

learnt parameters which has worse overall clustering evaluation scores, especially in terms

of VI. This sample though has the best homogeneity score (69.39%). We believe that

homogeneity is more important than the overall clustering score due to the fact that, in

the application considered, it is probably worse to assign tokens that belong to different

PoS tags to the same state, e.g. verb and adverbs, rather than generate more than one

state for the same PoS. This is likely to be the case in tasks where we are interested

in distinguishing between PoS tags rather than the actual tag itself. Also, clustering

evaluation measures tend to score leniently consistent mixing of members of different

classes in the same cluster. However, such mixing results in consistent noise when the

clustering output becomes input to a machine learning method, which is harder to deal

with.

4.5 Discussion

In the context of shallow parsing we saw that the performance of the iHMM does not

match the performance of a supervised PoS tagger but does lead to a performance increase

over a model using only words as features. Given that it was constructed without any

need for human annotation, we believe this is a good result. At the same time though, it

suggests that it is still some way from being a direct drop-in replacement for a supervised

method. We also showed that the iHMM with Pitman-Yor base distribution outperforms

the baseline iHMM on various measures. This is an interesting result since we don’t

know the finite marginal distribution of the Pitman-Yor distribution; it would thus be

impossible to mimic this model using a finite HMM.

Our experiments also suggest that the number of states in a Bayesian non-parametric

model can be rather unpredictable. On one hand, this is a strong warning towards
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inference algorithms which perform finite truncation of non-parametric models. On the

other hand, the remarkable difference in behaviour between the DP with fixed and learnt

priors suggests that more research is needed towards understanding the influence of hyper

parameters in Bayesian non-parametric models.

Also, the HMM and iHMM’s are statistical models: they are not designed to corre-

spond to our linguistic notion of PoS tags. They just happen to pick up very similar

statistical properties. Great caution must be used when “peeking” inside a statistical

model and interpreting the latent states. For future work we would suggest a semi-

supervised approach to PoS tagging. In this model we let the transition matrix of the

iHMM depend on annotated PoS tags. This model allows us to: a) use annotations

whenever they are available and do unsupervised learning otherwise; b) use the power of

non-parametric methods to possibly learn more fine grained statistical structure than tag

sets created manually. This idea is similar to the context free grammar state-splitting

ideas in Finkel et al. (2007), Liang et al. (2007).

Finally, another area for future investigation is doing unsupervised PoS tagging using

web-scale data set. Although the WSJ corpus is reasonably sized, our computational

methods do not currently scale to problems with one or two orders of magnitude more

data. Our initial work (Bratières et al., 2010) has extended the beam sampler to work in

a distributed environment using the map reduce paradigm.
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Chapter 5

The Infinite Factorial Hidden Markov

Model

We motivated the HMM in chapter 3 by introducing the part-of-speech tagging appli-

cation. The assumption there was that a sentence can be produced by first generating

a sequence of part-of-speech tags using a Markov chain and then generating the actual

words conditioned on the part-of-speech tag. In other words, the hidden structure for a

sentence was represented by one specific part-of-speech tag per word.

In this chapter we will look at some applications where having one latent variable per

time step is too limited. Consider the so-called cocktail party problem. In this applica-

tion we have people attending a cocktail party with all people chatting in little groups.

Multiple people in separate groups might be talking at the same time. One or more

microphones record all the conversations simultaneously and the goal is to extract each

individuals speech signal from the recording. In this example, we will argue later on in the

chapter that a good latent representation is to use multiple latent Markov models, each

modelling the speech for one person. The latent Markov chains are then mixed together

to form the observed microphone signal. This type of model has previously been called a

factorial Markov model. In this chapter we introduce a Bayesian nonparametric Markov

model with a factorial representation: it extends previous work by explicitly learning the

number of latent chains. This chapter is based on work published in Van Gael et al.

(2008b).

5.1 The Factorial Hidden Markov Model

The factorial hidden Markov model (FHMM), developed in Ghahramani and Jordan

(1997), addresses the limited representational power of the hidden Markov model. The

FHMM extends the HMM by representing the hidden state in a factored form. This

way, information from the past is propagated in a distributed manner through a set of
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Figure 5.1: The graphical model for a Factorial Hidden Markov Model.

parallel Markov chains. The parallel chains can be viewed as latent features which evolve

over time according to Markov dynamics. Formally, the FHMM defines a probability

distribution over observations y1, y2, · · · yT as follows: M latent chains s(1), s(2), · · · , s(M)

evolve according to Markov dynamics and at each time step t, the Markov chains generate

an output yt using some likelihood model F parameterised by a joint state-dependent

parameter θ
s
(1:m)
t

. The graphical model of the FHMM in figure 5.1 shows how it is a

special case of a dynamic Bayesian network.

Unfortunately, the dimensionality M of our factorial representation, or equivalently,

the number of parallel Markov chains, is a free parameter for the FHMM which we

would prefer learning from data rather than specifying beforehand. In this chapter we

derive the basic building blocks for a Bayesian nonparametric factor model for time series

which we call the Markov Indian Buffet Process (mIBP). Using this distribution we build

a nonparametric extension of the FHMM which we call the Infinite Factorial Hidden

Markov Model (iFHMM). This construction allows us to learn a factorial representation

for time series.

5.2 The Markov Indian Buffet Process

Similar to the IBP, we define a distribution over binary matrices to model whether a

feature at time t is on or off. In our representation rows correspond to time steps and

columns to features or Markov chains. We want the distribution over matrices to satisfy

the following two properties: (1) the potential number of columns (representing latent

features) should be able to be arbitrary large; (2) the rows (representing time steps)

should evolve according to a Markov process.

Below, we formally derive the mIBP distribution in two steps: first we describe a
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distribution over binary matrices with a finite number of columns. We choose the hyper

parameters carefully so we can easily integrate out the parameters of the model. In a

second phase we take the limit as the number of features goes to infinity as we did in

section 2.3.

5.2.1 A Finite Model

Let S represent a binary matrix with T rows (data points or time steps) and M columns

(features) such that stm represents the hidden state at time t for Markov chain m. Each

Markov chain evolves according to the transition matrix

W (m) =

(
1− am am

1− bm bm

)
, (5.1)

where W
(m)
ij = p(st+1,m = j|stm = i). We give the parameters of W (m) distributions

am ∼ Beta(α/M, 1) and bm ∼ Beta(γ, δ). Each chain starts with a dummy zero state

s0m = 0. The hidden state sequence for chain m is generated by sampling T steps from

a Markov chain with transition matrix W (m). Summarising, the generative specification

for this process is

∀m ∈ {1, 2, · · · ,M} : am ∼ Beta
( α
M
, 1
)
, bm ∼ Beta(γ, δ),

∀t ∈ {1, 2, · · · , T} : s0m = 0, stm ∼ Bernoulli(a1−st−1,m
m bst−1,m

m ). (5.2)

Next, we evaluate the probability of the state matrix S with the transition matrix pa-

rameters W (m) marginalised out. We introduce the following notation, let c00
m , c

01
m , c

10
m , c

11
m

be the number of 0→ 0, 0→ 1, 1→ 0 and 1→ 1 transitions in binary chain m (including

the transition from the dummy state to the first state). We can then write

p(S|a, b) =
M∏
m=1

(1− am)c
00
mac

01
m
m (1− bm)c

10
m bc

11
m
m , (5.3)

and integrate out a and b with respect to the conjugate priors defined in equation (5.2)

to find

p(S|α, γ, δ) =
M∏
m=1

α
M

Γ( α
M

+ c01
m )Γ(c00

m + 1)Γ(γ + δ)Γ(δ + c10
m )Γ(γ + c11

m )

Γ( α
M

+ c00
m + c01

m + 1)Γ(γ)Γ(δ)Γ(γ + δ + c10
m + c11

m )
. (5.4)

5.2.2 Taking the Infinite Limit

Analogous to the IBP we compute the limit for M → ∞ of the finite model in equa-

tion (5.4). Recall from our discussion in section 2.3 that the probability of a single

matrix in the limit as M → ∞ is zero. This is not a problem since we are only inter-

ested in the probability of a whole class of matrices, namely those matrices that can be
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transformed into each other through column permutations. In other words, our factorial

model is exchangeable in the columns as we don’t care about the ordering of the features.

Hence, we compute the infinite limit for left-ordered form equivalence classes.

Recall from section 2.3 that the left-ordered form of a binary S matrix can be defined

as follows: we interpret one column of length T as encoding a binary number: column m

encodes the number 2T−1s1m + 2T−2s2m + · · · + sTm. We called this number the history

of the column. Then, we denote with Mh the number of columns in the matrix S that

have the same history. We defined a matrix to be a left-ordered matrix if its columns are

sorted in decreasing history values. If S is a left-ordered matrix then we denoted with [S]

the set of all matrices that can be transformed into S using only column permutations;

we call [S] the left-ordered equivalence class. We argued in section 2.3 that the number

of elements in the left-ordered equivalence class of S is equal to M !∏2T−1
h=0 Mh!

. We thus find

the probability of the equivalence class of S to be

p([S]) =
∑
S∈[S]

p(S|α, γ, δ)

=
M !∏2T−1

h=0 Mh!

M∏
m=1

α
M

Γ( α
M

+ c01
m )Γ(c00

m + 1)Γ(γ + δ)Γ(δ + c10
m )Γ(γ + c11

m )

Γ( α
M

+ c00
m + c01

m + 1)Γ(γ)Γ(δ)Γ(γ + δ + c10
m + c11

m )
.(5.5)

This form allows us to compute a meaningful limit as M → ∞. In order to do so,

we need to distinguish between two types of Markov chains: those with all zero states

(c00
m = T ) and those with nonzero states (c00

m < T ). Let us denote with M0 the number of

Markov chains with all zero states and with M+ the number of Markov chains which have

nonzero states; note that M = M0 + M+. We can rewrite the product in equation (5.5)

based on this dichotomy

M∏
m=1

α
M

Γ( α
M

+ c01
m )Γ(c00

m + 1)Γ(γ + δ)Γ(δ + c10
m )Γ(γ + c11

m )

Γ( α
M

+ c00
m + c01

m + 1)Γ(γ)Γ(δ)Γ(γ + δ + c10
m + c11

m )

=

(
αΓ( α

M
)Γ(T + 1)

MΓ( α
M

+ T + 1)

)M0 M+∏
m=1

α
M

Γ( α
M

+ c01
m )Γ(c00

m + 1)Γ(γ + δ)Γ(δ + c10
m )Γ(γ + c11

m )

Γ( α
M

+ c00
m + c01

m + 1)Γ(γ)Γ(δ)Γ(γ + δ + c10
m + c11

m )

=

(
Γ( α

M
+ 1)Γ(T + 1)

Γ( α
M

+ T + 1)

)M M+∏
m=1

Γ( α
M

+ T + 1)Γ( α
M

+ c01
m )Γ(c00

m + 1)Γ(γ + δ)Γ(δ + c10
m )Γ(γ + c11

m )

Γ( α
M

)Γ(T + 1)Γ( α
M

+ c00
m + c01

m + 1)Γ(γ)Γ(δ)Γ(γ + δ + c10
m + c11

m )

=

(
T !∏T

t=1(t+ α
M

)

)M ( α
M

)M+
M+∏
m=1

Γ( α
M

+ T + 1)
∏c01m−1

i=1 (i+ α
M

)c00
m !Γ(γ + δ)Γ(δ + c10

m )Γ(γ + c11
m )

T !Γ( α
M

+ c00
m + c01

m + 1)Γ(γ)Γ(δ)Γ(γ + δ + c10
m + c11

m )
.

Substituting this equation back into equation (5.5) and using the results in appendix C

we compute the final limit

lim
M→∞

p([S]) =
αM+ exp{−αHT}∏2T−1

h=1 Mh!

M+∏
m=1

(c01
m − 1)!c00

m !Γ(γ + δ)Γ(δ + c10
m )Γ(γ + c11

m )

(c00
m + c01

m )!Γ(γ)Γ(δ)Γ(γ + δ + c10
m + c11

m )
. (5.6)
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We call this distribution the Markov Indian buffet process. Note from equation (5.6) that

our model is exchangeable in the columns and Markov exchangeable1 in the rows.

5.2.3 The Stochastic Process

Next we derive the distribution in equation (5.6) through a stochastic process that is

analogous to the Indian Buffet Process but slightly more complicated for the actors

involved. In this stochastic process T customers enter an Indian restaurant with an

infinitely long buffet of dishes organised in a line. The first customer enters the restaurant

and takes a serving from each dish starting at the left of the buffet and stopping after

a Poisson(α) number of dishes as his plate becomes overburdened. A waiter stands near

the buffet and takes notes as to how many people have eaten which dishes. The t’th

customer enters the restaurant and starts at the left of the buffet. At dish m he looks at

the customer in front of him to see whether he has served himself that dish.

• If so, he asks the waiter how many people have previously served themselves dish

m when the person in front of them did (the waiter replies to him the number c11
m )

and how many people didn’t serve themselves dish m when the person in front of

them did (the waiter replies to him the number c10
m ). The customer then serves

himself dish m with probability (c11
m + δ)/(γ + δ + c10

m + c11
m ).

• Otherwise, he asks the waiter how many people have previously served themselves

dish m when the person in front of them did not (the waiters replies to him the

number c01
m ) and how many people didn’t serve themselves dish m when the person

in front of them did not either (the waiter replies to him the number c00
m ). The

customer then serves himself dish m with probability c00
m/(c

00
m + c01

m ).

The customer then moves on to the next dish and does exactly the same. After the

customer has passed all dishes people have previously served themselves from, he tries

Poisson(α/t) new dishes. If we denote with M
(t)
1 the number of new dishes tried by the

t’th customer, the probability of any particular matrix being produced by this process is

p([S]) =
αM+ exp{−αHT}∏T

t=1 M
(t)
1 !

M+∏
m=1

α
M

Γ( α
M

+ c01
m )Γ(c00

m + 1)Γ(γ + δ)Γ(δ + c10
m )Γ(γ + c11

m )

Γ( α
M

+ c00
m + c01

m + 1)Γ(γ)Γ(δ)Γ(γ + δ + c10
m + c11

m )
.

We can recover equation (5.6) by summing over all possible matrices that can be generated

using the Markov Indian Buffet process that are in the same left-ordered equivalence

class; there are exactly
∏T
t=1M

(t)
1 !∏2T−1

h=1 Mh!
matrices in the same left-ordered equivalence class.

Multiplying this by equation (5.2.3) we recover equation (5.6). This construction shows

that the effective dimension of the model (M+) follows a Poisson(αHT ) distribution.

1A sequence is Markov exchangeable if its distribution is invariant under permutations of the transi-

tions (Diaconis and Freedman, 1980).

115



5.2.4 The Stick Breaking Representation

Although the representation above is convenient for theoretical analysis it is not very

practical for inference. Interestingly, we can adapt the stick breaking construction for the

IBP (Teh et al., 2007) to the mIBP. This will be very important as it will allow us to use

a combination of slice sampling and dynamic programming to do inference.

The first step in the stick breaking construction is to find the distribution of a(1) >

a(2) > . . .: the order statistics of the parameters a. Since the distribution on the variables

am in our model is identical to the distribution of the feature parameters in the IBP model,

we can use the result in Teh et al. (2007) that these variables have the distribution

a(1) ∝ Beta(α, 1), (5.7)

p(a(m)|a(m−1)) = αa−α(m−1)a
α−1
(m) I(0 ≤ a(m) ≤ a(m−1)).

Using a change of variables, it can be shown that this is equivalent to the following stick

breaking construction

ν(m) ∝ Beta(α, 1) a(m) ∝
m∏
l=1

ν(l). (5.8)

The variables bm are all independent draws from a Beta(γ, δ) distribution which is

independent of M . Hence if we denote with b(m) the b variable corresponding to the m’th

largest a value (in other words: the b value corresponding to a(m)) then it follows that

b(m) ∼ Beta(γ, δ).

5.2.5 Discussion

The Markov Indian buffet process introduced in this chapter is a first attempt at defining a

nonparametric dynamic factor model. Its strength is that a stick breaking representation

is readily available. One weakness is that the stationary distribution for the different

chains don’t have a nice analytic form: Miller et al. (2008b) addresses this issue.

5.3 The Infinite Factorial Hidden Markov Model

In this section, we explain how to use the mIBP as a building block in a full blown

probabilistic model. The mIBP provides us with a matrix S which we interpret as an

arbitrarily large set of parallel Markov chains. First we augment our binary representation

with a more expressive component which can describe feature specific properties. We do

this by introducing a base distribution H from which we sample a parameter θm ∼ H

for each Markov chain. Moreover, since we know the length of the mIBP sequence T ,

we can choose to make the base distribution H be a multivariate distribution over T
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Figure 5.2: The graphical model for an infinite Factorial Hidden Markov Model.

variables. This is a rather flexible setup where the base distribution not only introduces

a parameter for every chain but also for every time step. We will show an example of

this type of model in section 5.5.

Now that we have a model with a more expressive latent structure, we want to add a

likelihood model F which describes the distribution over the observations conditional on

the latent structure. Formally, F (yt|θ, st,·) describes the probability of generating yt given

the model parameters θ and the current latent feature state st,·. We note that there are

two important conditions which the likelihood must satisfy in order for the limit M →∞
to be valid: (1) the likelihood must be invariant to permutations of the features; (2) the

likelihood cannot depend on θm if stm = 0. Figure 5.2 shows the graphical model for our

construction: we call it the infinite Factorial Hidden Markov Model (iFHMM).

5.4 Inference

We conclude this chapter with an inference scheme for the iFHMM. As we discussed in

chapter 3, inference for nonparametric models requires special treatment as the potentially

unbounded dimensionality of the model makes it hard to use exact inference methods.

Traditionally, in nonparametric factor models inference is done using Gibbs sampling,

sometimes augmented with Metropolis Hastings steps to improve performance. As we

argued in chapter 3 it is commonly known that naive Gibbs sampling in a time series

model is notoriously slow due to potentially strong couplings between successive time

steps. We will use a similar methodology as in chapter 3 where a slice sampler adaptively

truncates the infinite dimensional model after which dynamic programming performs

exact inference. Since a stick breaking construction for the iFHMM is readily available
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we can use a very similar approach for the iFHMM. The central idea is the following: we

introduce an auxiliary slice variable with the following distribution

µ ∼ Uniform(0, min
m:∃t,stm=1

am). (5.9)

It is not essential that we sample from the uniform distribution; in fact, for some of our

experiments we use the more flexible Beta distribution. The resulting joint distribution

of the iFHMM with augmented auxiliary variables is

p(µ, a, b, S) = p(µ|a, S)p(a, b, S). (5.10)

It is clear from the equation above that one recovers the original mIBP distribution when

we integrate out µ. When we condition the joint distribution on µ we find

p(S|Y, µ, a, b) ∝ p(S|Y, a, b)I(0 ≤ µ ≤ minm:∃t,stm=1 am)

minm:∃t,stm=1 am
(5.11)

which forces all columns of S for which am < µ to be in the all zero state. Since there can

only be a finite number of am > µ this effectively implies that we need only re-sample a

finite number of columns of S.

Algorithm 5 Slice sampling algorithm for the iFHMM.

Initialise a, b, S, θ randomly.

loop

Sample the transition matrix parameters a|S, α and b|S, γ, δ
Sample the auxiliary variable µ|S, a
Sample the state sequence S|a, b, µ, Y
Sample the parameters θ|S,H, Y

end loop

Algorithm 5 shows the high level overview of the iFHMM sampler. One can think

of the algorithm as a blocked Gibbs sampling algorithm with some step using dynamic

programming to sample blocks of variables all at once. We now consider each of the

sampling steps in more detail.

Sampling a|S, α and b|S, γ, δ: in this step we estimate the transition parameters for

each column of S. The easy case is for the columns that are switched on at some point

in time. Using Bayes rule we can compute the posterior

ak ∼ Beta(c01
m , c

00
m )

bk ∼ Beta(c11
m + γ, c10

m + δ).

We don’t effectively sample the a and b for the unused features because there are an

infinite number of them. As we will only need those a that are larger than µ we need
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the posterior distribution of the a in decreasing order so we can retrospectively sample

them (Papaspiliopoulos et al., 2008). The stick-breaking construction in equation (5.8)

is exactly this.

Sampling µ|S, a: as we described above, we sample

µ ∼ Uniform(0, min
m:∃t,stm=1

am). (5.12)

As with the beam sampler for the iHMM the uniform distribution is not critical. We

can improve the mixing time by biasing µ downward to let the algorithm consider more

features or improve the computational complexity by decreasing the number of features

considered.

Sampling S|a, b, µ, Y : we only need to re-sample a finite number of columns m where

am > µ. Ghahramani and Jordan (1997) showed that it is computationally intractable to

compute the full posterior for more than a few Markov chains at once. Hence we propose

to fix all but a few chains and Gibbs sample them conditioned on the fixed chains.

Currently the most attractive option is to use the forward-filtering backward-sampling

algorithm (see appendix B) to resample the chains.

Sampling θ|S,H, Y : The final step in the sampler for the iFHMM re-samples the

parameters θ conditioned on the feature assignment matrix S and the base distribution

H. When the base distribution H is conjugate to the likelihood model F there is a closed

form for the posterior distribution p(θ|S,H, Y ) from which to sample; otherwise one has

to resort to custom inference schemes to sample from this posterior.

5.5 Blind Source Separation using the iFHMM

A common task in audio and signal processing is the extraction of different signals from

one or more recordings or data streams. This is often called blind source separation. The

cocktail party problem is an example of such a task: a number of people attend a cocktail

party and are chatting in little groups. Multiple people in separate groups might be

talking at the same time. One or more microphones record all the conversations simul-

taneously and the goal is to extract each individual’s speech signal from the recording.

We present one solution to this problem using a nonparametric time series model based

on independent component analysis (ICA, Hyvärinen and Oja (2000)).

5.5.1 The Independent Component Analysis iFHMM

Independent Component Analysis means different things to different people. Originally

invented as an algorithm to un-mix a signal into a set of independent signals, it will be

more insightful for our purpose to think of ICA in terms of the probabilistic model which

we describe below.
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Assume that M signals are represented through the vectors xm; grouping them to-

gether we can represent the signals using the matrix X = [x1x2 · · ·xM ]. Next, we linearly

combine the signals using a mixing matrix W to generate the observed signal Y = XW .

Additionally, we will assume additive i.i.d. Normal(0, σ2
Y ) noise: Y = XW + ε.

A variety of fast algorithms exist which un-mix the observations Y and recover the

signal X. Crucial to these algorithms is that the number of signals is known in ad-

vance. Knowles and Ghahramani (2007) used the IBP to design the infinite Independent

Component Analysis (iICA) model which learns an appropriate number of signals from

exchangeable data. Our ICA iFHMM model extends the iICA for time series; we will

refer to it as the ICA iFHMM.

The ICA iFHMM generative model can be described as follows: we sample S ∼ mIBP

and point-wise multiply (denoted by �) it with a signal matrix X. Each entry in X is an

i.i.d. sample from a Laplace(0, 1) distribution. One could choose many other distributions

for X, but since we will model speech data, which is known to be heavy tailed, the Laplace

distribution is a reasonable and convenient choice. Speakers will be speaking infrequently

so point-wise multiplying a heavy tailed distribution with a sparse binary matrix achieves

our goal of producing a sparse heavy tailed distribution, this model is also known as a

spike-and-slab model. Next, we introduce a mixing matrix W which has a row for each

signal in S �X and a column for each observed dimension in Y . The entries for W

are sampled i.i.d. from a Normal(0, σ2
W ) distribution. Finally, we combine the signal and

mixing matrices as in the finite case to form the observation matrix Y = (S �X)W + ε

where ε is i.i.d. Normal(0, σ2
Y ). In terms of the general iFHMM model defined in the

previous section, the base distribution H is a joint distribution over columns of X and

rows of W . The likelihood F performs the point wise multiplication, mixes the signals

and adds the noise. It can be checked that our likelihood satisfies the two technical

conditions for proper iFHMM likelihoods described in section 5.3.

We perform inference using the algorithm described in section 5.4. We experimented

with 3 different algorithms for re-sampling S in algorithm 5. The first, a naive Gibbs

sampler did not perform well. This was to be expected for a time series model. The

second algorithm, which we used for our experiments, is a blocked Gibbs sampler which

fixes all but one column of S and runs a forward-filtering backward-sampling sweep on

the remaining column. This allows us to analytically integrate out one column of X in

the dynamic program and re-sample it from the posterior afterwards. In this setting,

W can be sampled exactly conditional on X,S, Y . A third algorithm runs dynamic

programming on multiple chains at once. We originally designed this algorithm as it has

the potential to merge two features in one sweep. However, we found that because we

cannot integrate out X and W in this setting, the mixing time was not faster than our

second algorithm. Note that because the bulk of the computation is used for estimating

120



X and W the dynamic programming based algorithms are effectively as fast as the naive

Gibbs sampler. Finally note that the rows of X are mutually independent given W,Y, S;

hence we can sample them in parallel. Our implementation leverages this to speed up

the computation on multi-core systems.

5.5.2 Experiments

To test the ICA-iFHMM model and inference algorithms, we address the cocktail party

problem. For this problem we record multiple people who are simultaneously speaking

using a set of microphones. Given the mixed speech signals the goal is to separate out

the individual speech signals. Key to our presentation is that we want to illustrate

that using nonparametric methods, we can learn the number of speakers from a small

amount of data. Our first experiment learns to recover the signals in a setting with more

microphones then speakers, our second experiment uses less microphones then speakers.

The experimental setup was the following: we downloaded data from 5 speakers from

the Speech Separation Challenge website2. The data for each speaker consists of 4 sen-

tences which we appended with random pauses in between each sentence. The left plot in

Figure 33 illustrates which person is talking at what point in time. Next, we artificially

mix the data 10 times. Each mixture is a linear combination of each of the 5 speakers

using Uniform(0, 1) mixing weights. We centred the data to have zero mean and unit

variance and added i.i.d. Normal(0, σ2
Y ) noise with σY = 0.3.

In our first experiment we compared the ICA iFHMM with the iICA model using

all 10 microphones. We sub sample the data so we learn from 245 data points. We

initialised the samplers for both models with an initial S matrix with 10 features and

5% random entries on. We use a Gamma(1.0, 4.0) prior on α. In both models, we use

an InverseGamma(2.0, 1.0) prior for σY and σW . Finally, for the iFHMM we chose a

Gamma(10.0, 1.0) prior on γ and a Gamma(1.0, 1.0) prior on δ to encode our belief that

people speak for larger stretches of time, say the time to pronounce a sentence. We ran

the samplers for 5000 burn-in iterations and then gathered 20 samples every 20 iterations.

For both the ICA iFHMM and iICA models, we average the 20 samples and rearrange

the features to have maximal overlap with the ground truth features. The middle plot

in figure 5.3 shows that the ICA iFHMM model recognises that the data was generated

from 5 speakers. Visual inspection of the recovered S matrix also shows that the model

discovers who is speaking at what time. The right plot in figure 5.3 illustrates the results

of the iICA model on the same data. Although the model discovers some structure in

the data it fails to find the right number of speakers (it finds 9) and does a poor job

in discovering which speaker is active at which time. We computed the average mutual

information between the 5 columns of the true S matrix and the first 5 columns of the

2http://www.dcs.shef.ac.uk/m̃artin/SpeechSeparationChallenge.htm
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Ground Truth ICA iFHMM iICA

Figure 5.3: Blind speech separation experiment with 10 microphones; figures represent

which speaker is speaking at a certain point in time: columns are speakers, rows are white

if the speaker is talking and black otherwise. This corresponds to a visualisation of the

S matrix in the iFHMM model.

recovered S matrices. We find that the iFHMM has an average mutual information of

0.296 bits compared to 0.068 bits for the iICA model. The difference between the two

models is strictly limited to the difference between using the IBP versus mIBP as the

prior distribution on S. We want to emphasise that although one could come up with ad-

hoc heuristics to smooth the iICA results, the ICA iFHMM is a principled probabilistic

model that does a good job at comparable computational cost.

In a second experiment, we chose to perform blind speech separation using only the

first 3 microphones. We sub-sampled a noiseless version of the data to get 489 data

points. We ran both the ICA iFHMM and iICA inference algorithms using exactly the

same settings as in the previous experiment. The middle and right plots in figure 5.4

show the average of 20 samples rearranged to match the ground truth. In this setting

both methods fail to identify the number of speakers although the ICA iFHMM clearly

performs better. The ICA iFHMM finds one too many signal: the spurious signal is very

similar to the third signal which suggests that the error is a problem of the inference

algorithm and not so much of the model itself. The iICA on the other hand performs

poorly: it is very hard to find any structure in the recovered S matrix. We compared

the mutual information as described above and find that the iFHMM has a mutual

information of 0.091 compared to 0.028 for the iICA model. To our knowledge, this is the

first generative model which performs blind-source separation with an unknown number

of speakers.
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Ground Truth ICA iFHMM iICA

Figure 5.4: Blind speech separation experiment with 3 microphones; figures represent

which speaker is speaking at a certain point in time: columns are speakers, rows are

white if the speaker is talking and black otherwise. This corresponds to a visualisation

of the S matrix in the iFHMM model.

5.6 Discussion

In this chapter we reviewed both parametric FHMM as well as introducing the Bayesian

non-parametric analogue, the iFHMM. We showed how to construct a sampling based

inference algorithm and used this to solve the cocktail party problem where the number

of speakers is unknown.

In this chapter we focussed on deriving a Bayesian non-parametric model where each

chain has a binary state space. As far as we know, there is no extension of this work to

arbitrary finite state spaces such as in the FHMM. Even beyond this, one could imagine

building a factorial model where each chain has a potentially infinite state space. Such

a model would have the power to both learn the number of chains as well as the state

space for each chain.
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Chapter 6

Conclusion

In my thesis, I started from the assumption that nonparametric models have great po-

tential in data modelling. Data sets become bigger every day and we need models which

can adapt to the complexity progressively as more data becomes available.

The mathematics and statistics community have laid the foundation both in theory

as well as in applications for Bayesian nonparametric models. I strongly believe that

computer science can contribute a great deal of algorithmic expertise in taking Bayesian

nonparametrics further.

In chapter 3 we built on the literature which introduced the iHMM and introduced

the first dynamic programming-based algorithm, called the beam sampler, which can

do inference for this Bayesian nonparametric model (based on work in Van Gael et al.

(2008a)). In this chapter we introduced a second dynamic programming-based algorithm,

called the embedded HMM sampler, which in comparison to the beam sampler allows

more fine-grained control over the per iteration computational complexity. Since the

introduction of the HDP in Teh et al. (2006a) it was unclear whether the HDP-HMM

and iHMM define the same distribution over observations. In this chapter, we resolved

this open problem and proved that they do define the same probability distribution.

Both the embedded HMM sampler as well as the equivalence proof are both novel and

unpublished contributions to the machine learning literature.

I believe that the beam sampler or the embedded HMM samplers are the methods

of choice for inference for the iHMM. Our work shows that the dynamic programming

based samplers mix faster than the Gibbs or collapsed Gibbs samplers that were known

previously. In Fox et al. (2008a), the iHMM was truncated into a finite model making

a standard dynamic programming based approach feasible. In my opinion the complex-

ity of the beam sampler (less than 100 lines of code in Matlab) is so small that it does

not warrant changing the model to make inference practical. We have released a proto-

type Matlab implementation on MLOSS Van Gael (2010) which we hope stimulates the

adoption of the beam sampling algorithm.
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In chapter 4, we used the iHMM to tackle an important task in natural language

processing called unsupervised part-of-speech tagging (based on work in Van Gael et al.

(2009)). The contribution of this work is twofold: first, we showed that the iHMM

is a good alternative to the model selection approaches that were offered in previous

work (Johnson, 2007, Goldwater and Griffiths, 2007, Gao and Johnson, 2008). Secondly,

we believe one needs to be careful in reading into the latent representation. A Bayesian

nonparametric model just captures the Markov correlations in the data; although this

correlates with part-of-speech tags, they are not the same. Nonetheless, our work shows

that the iHMM states can be successfully used as features in an NLP pipeline. In more

recent work (Bratières et al., 2010) we have also explored using the Hadoop distributed

computing platform for doing large scale unsupervised language processing using the

iHMM.

An area of future work which I am currently exploring is to combine parametric and

non-parametric Markov chains. The idea here would be to use an HMM as the input

for an IO-iHMM. In a part-of-speech tagging context, we could train the HMM using

tagged sequences while at the same time learning the IO-iHMM. This model learns more

fine-grained structure based on the corpus defined tags resulting in better predictions.

A second area of further investigation is to use the non-parametric models for language

modelling rather than part-of-speech tagging. Non-parametric models such as the HDP

and its extensions have shown great promise (Teh, 2006) for language modelling. We are

currently exploring the performance of the iHMM for similar tasks as well.

In our final chapter 5, we introduced a new Bayesian nonparametric model called the

infinite Factorial Hidden Markov Model (based on the work in Van Gael et al. (2008b)).

The iFHMM and its underlying distribution, called the Markov Indian Buffet Process,

allow for modelling parallel chains of latent random variables while keeping the number

of parameters in the model small. We described an inference algorithm for the iFHMM

and applied the model to the cocktail party problem where the number of speakers was

unknown. Although our results show good performance on a small dataset, I have found

that for larger problems the inference algorithm becomes a limitation. More generally, in

my research I have found that any inference over IBP or mIBP-based models suffers from

various problems, e.g. getting stuck in local optima, due to the combinatorial nature

of the distribution. I believe that a search based inference algorithm, such as the one

introduced in Daume (2007) for Dirichlet processes, is a promising alternative.

In the limited amount of experiments I have done, I have found that almost any

problem in unsupervised learning which is set up as a parametric model can be trans-

formed into a non-parametric model without any loss of performance. Moreover, the

nonparametric equivalent requires less parameter tuning and output results faster than

most model selection-based approaches.
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After three years of research I strongly believe that Bayesian nonparametric models

have great potential in both machine learning and statistics. I think the most promising

future for Bayesian nonparametric models lies in defining distributions over more com-

plicated objects such as trees and graphs and I am interested to explore these in the

future.
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Appendix A

The Dirichlet Distribution

The Dirichlet distribution is an important distribution in this thesis: e.g. it surfaces as

the prior for the rows of the transition matrix in the HMM (chapter 1) and the emission

distribution in various natural language processing problems (chapter 4). It is therefore

instructive that we review a few of its key properties.

The Dirichlet distribution is a distribution over finite probability vectors; in other

words, it is a “distribution over distributions”. A Dirichlet distribution of dimension K

is parametrised by K positive real numbers α1, · · · , αK . We write

π ∼ Dirichlet(α1, · · · , αK) (A.1)

to denote that π is a sample of a Dirichlet distribution. The mean of the Dirichlet

distribution is E[πk] = αk/α where α =
∑

k αk. The variance of any component of the

Dirichlet distribution can be written as

V[πk] =
αk(α− αk)
α2(α + 1)

. (A.2)

It is common to work with a constrained version of the Dirichlet distribution called

the symmetric Dirichlet distribution. This is the special case when all α1 = · · · = αK .

We write

π ∼ Dirichlet(α) (A.3)

to denote π is a sample from the symmetric Dirichlet distribution. The mean of any

component reduces to E[πk] = 1/K and the variance to

V[πk] =
K − 1

K2(Kα + 1)
. (A.4)

We can now see that when α is small, samples from the Dirichlet will have high variance

while with α large, samples from the Dirichlet will have small variance. In the limit

α → ∞, samples from a Dirichlet distribution tend to a uniform distribution. This
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Figure A.1: Samples from a 200 dimensional Dirichlet distribution with decreasing pa-

rameter values. The x-axis shows the different dimensions of the Dirichlet samples. The

y-axis shows the probability for each dimension.

behaviour is illustrated in figure A.1 for a Dirichlet with 200 dimensions: the bottom

right plot has α = 0.001 and hence a draw from this Dirichlet has only a few nonzero

entries (hence high variance) while the top left plot has α = 1.0 hence all entries of the

sample have roughly the same magnitude (about 0.001).

Figure A.1 also makes clear why a Dirichlet distribution with K →∞ is nonsensical.

This limit degenerates to a point mass on an arbitrary dimension.

Nemenman et al. (2001) describe a fascinating analysis of the Dirichlet distribution

that applies to the work in this thesis. Let us denote by S the entropy of a random

variable q ∼ Dirichlet(β). S is a random variable with distribution

p(S|β) =

∫
dq1dq2 · · · dqKp(q|β)δ

[
S +

K∑
k=1

qk log qk

]
. (A.5)

From our argument above, we can expect the entropy of a Dirichlet draw to be high when

β is large. More in particular, it is upper bounded by log(K) when β approaches infinity

and the Dirichlet distribution will approach a singular distribution at the uniform discrete

distribution. When β approaches 0, a draw from a Dirichlet distribution approaches a

delta peak on a random entry which is a distribution with entropy 1. Getting a full

handle on the distribution of S is complicated but Nemenman et al. (2001) show how

to compute the mean and variance of S. Figure A.2 illustrates the distribution of the

mean and variance for the Dirichlet distribution with varying β and K. As this plot

illustrates, for a particular value of β, the entropy of Dirichlet draws have small variance.

This implies that as you change β, the entropy of the Dirichlet draws vary smoothly,

however, because the variance of the entropy is very peaked, the a priori choice of β
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Figure A.2: The mean ξ(β) and standard deviation σ(β) of the entropy for a sample

from a Dirichlet(β) distribution as a function of β. The grey bands denote one standard

deviation away from the mean. Note the transition from logarithmic to linear scale at

β = 0.25 in the insert. Figure reproduced from Nemenman et al. (2001).

almost completely fixes the entropy. This is problematic as it means that unless our

distribution is sampled almost completely, the estimate of the entropy is dominated by

the choice of our prior beta. In chapter 4 we propose one solution based on mixing over

a potentially infinite set of β’s using a DP mixture.
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Appendix B

The Forward-Filtering

Backward-Sampling Algorithm

The forward-filtering backward-sampling (FF-BS) algorithm is a Markov Chain Monte

Carlo technique for sampling the state sequence s1:T in a hidden Markov model using

dynamic programming. In contrast to Gibbs sampling, the FF-BS samples the state

sequence s1:T in one iteration whereas the Gibbs sampling algorithm iteratively samples

each st. For time series models, it is commonly known that this algorithm improves

mixing time dramatically (Scott, 2002).

In this section we give a short overview of the algorithm. Let us denote with π the K

by K transition matrix of the HMM and with F (x|s) the emission likelihood. Algorithm 6

describes the sampling procedure in more detail.

Algorithm 6 The forward-filtering backward-sampling algorithm.

Initialise a K by T table to store p(st = k|x1:t)

for t = 1 . . . T do

Compute the quantity p(st = k|x1:t) = p(xt|st = k)
∑

l πk,lp(st−1|x1:t−1)

end for

Sample p(sT |x1:T )

for t = T − 1 . . . 1 do

Sample the quantity p(st|x1:T , st+1) ∝ p(st|x1:t)πst,st+1

end for

The core idea of the FF-BS algorithm is to use dynamic programming to compute the

condition probability p(st|x1:t) for each state st. When we compute p(sT |x1:t), note that

it is conditioned on all the data. Hence, we can sample this variable where we integrated

out all other state variables and conditioned on all observations. The next step is to

then recursively sample the other states backwards by using Bayes rule p(st|x1:T , st+1) ∝
p(st|x1:t)πst,st+1 . The crucial observation is that we sample the whole state sequence in
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one iteration. Note that the FF-BS algorithm can easily be used as an internal “block”

for a blocked Gibbs sampler.
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Appendix C

Markov IBP Computation

In equation (5.6) in chapter 5 we need simplified versions of combinatorial expressions.

For completeness we’ve give the full derivation below.

lim
M→∞

M !

M0!MM+
= lim

M→∞

∏M+

m=1(M −m+ 1)

MM+

= lim
M→∞

(
MM+ − (M+−1)M+

2
MM+−1 + · · ·+ (−1)M+−1(M+ − 1)!M

MM+

)
= lim

M→∞

(
1−O

( c

M

))
= 1, for some constant c

lim
M→∞

c01m−1∏
i=1

(i+
α

M
) = lim

M→∞

(
(c01
m − 1)! +O

( c

M

))
= (c01

m − 1)!, for some constant c

lim
M→∞

(
T !∏T

t=1(t+ α
M

)

)M

= lim
M→∞

T∏
t=1

(
1

1 +
α 1
t

M

)M

= exp

(
−α

T∑
t=1

1

t

)
= exp(−αHT ).
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